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Abstract: The prediction of crack trajectories is one of the major challenges of existing numerical 
methods for the mechanical behavior of concrete and other quasi-brittle materials. For this purpose, 
this paper describes a methodology based on the use of zero-thickness interface elements equipped 
with a fracture-based constitutive law, combined with Configurational Mechanics theory. In the 
implementation developed, interface elements, initially inserted in between standard continuum 
elements, become realigned during the fracture propagation process on the basis of the so-called 
“configurational forces”, which represent the gradient of the total elastic energy of the domain with 
respect to the initial nodal position. In this way, and unlike most methods used in crack propagation 
that are based on local criteria such as maximum tensile stress, in the proposed method the crack 
configuration that is obtained approaches a global energy minimum for the structure or domain. The 
performance of the method is illustrated with an example of application in which the crack path is 
known a priori due to structural symmetry. 
 

1 INTRODUCTION 
The prediction of crack initiation and 

propagation of quasi-brittle materials such as 
rocks or concrete is an essential topic in various 
engineering fields such as Structural or 
Geotechnical Engineering.  

It is commonly accepted that the propagation 
of cracks is governed by the principles of 
Fracture Mechanics, which may be interpreted 
as establishing an energy consumption criterion 
per unit area of new crack created, which must 
be balanced with the energy relieved by elastic 
unloading in areas surrounding the propagating 
crack plus the work of external forces [1]. All 
these principles may be implemented 
numerically in the context of the FEM with 
cracks represented with zero-thickness 
interface elements [2], in which those elements 

are equipped with the appropriate energy-
driven constitutive laws [3]. 

In the general case, however, the above 
principles may be not sufficient to predict crack 
trajectory in cases in which that trajectory does 
not coincide with the mesh lines along which 
zero-thickness interface elements have been 
pre-inserted. The prediction of the most likely 
crack path requires the additional condition that 
the crack path corresponds to an energy 
minimum at the structural level, with respect to 
other alternative and energetically-balanced 
crack paths.  Enforcing this new condition may 
be achieved by means of Configurational 
Mechanics, which is concerned with the 
variation of the domain elastic energy with 
changes in the structural geometry including 
crack trajectories (configuration). 
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The original concepts of Configurational 
Mechanics were introduced in the fifties by 
Eshelby [4], who developed the driving forces 
for elastic singularities, defining the “Maxwell 
tensor of elasticity”, also known as the energy-
momentum tensor or Eshelby’s tensor 𝚺𝚺 = W𝐈𝐈 −
𝐅𝐅T𝐏𝐏. This tensor represents the “driving force” 
on moving defects or in-homogeneities of a 
solid such as dislocations in plasticity. Later, 
the close similarities with the concept of J-
Integral used in fracture mechanics motivated 
many researchers to study material forces 
application to crack propagation [5] - [6] - [7] - 
[8]. Nevertheless,  full combination of 
Configurational Mechanics with Fracture 
Mechanics in the context of the FEM is still a 
challenge. This paper summarizes the work 
developed along this line at the MECMAT 
group of the Geotechnical Engineering 
Division - UPC.  

 

2 BASIC CONCEPTS OF 
CONFIGURATIONAL MECHANICS 

Configurational Mechanics theory is based 
on the evaluation of energy variations caused 
by changes of material configuration; 
particularly, configurational forces are defined 
as the negative gradient of global elastic energy 
with respect to nodal location. Global energy is 
a function of original location as well as final 
node position after deformation 𝐱𝐱, i.e. ψ =
ψ (𝐗𝐗, 𝐱𝐱), this means that configurational forces 
are evaluated at constant 𝐱𝐱: 

𝐟𝐟 =
∂ψ
∂𝐗𝐗
�
𝐱𝐱=𝐜𝐜𝐜𝐜

 (1) 

As Steinmann et al. describes in [9], 
configurational forces may also be interpreted 
as the driving forces in the kinetics of a wide 
range of defect types, including cracks. In the 
finite element context, configurational nodal 
forces may be obtained as the following integral 
over the domain: 

𝐟𝐟 = �𝐁𝐁�𝑇𝑇𝚺𝚺 d𝑉𝑉 (2) 

where 𝐁𝐁� is the non-symmetric version of the 
traditional “B” FE matrix, and 𝚺𝚺 is the 

“configurational stress” given by Eshelby’s 
energy-momentum tensor [3]. The following 
logical step is to “move” nodes in the mesh 
(change their coordinates) along the directions 
indicated by configurational forces. Similar to 
classical deformational analysis, node 
relocation mush be subject to some restrictions, 
such as for instance boundary restrictoins not to 
change the domain geometry.  

Several authors [10] - [11] - [12] - [9] 
describe such procedures applied to continuum 
FE domains, generally leading to modified 
mesh configurations (in general preserving 
topology) which minimize global elastic 
energy. It is however not totally clear whether 
such modified configurations may correspond 
to an optimal mesh geometry. This is because, 
due to inevitable intrinsic FE discretization 
error, the minimum energy configuration does 
not necessarily correspond to the minimum 
error configuration (e.g. discretization error 
could be in the sense of under-evaluating elastic 
energy, and in that case minimum energy could 
actually correspond to maximum error).  

In contrast to the configurational changes 
mentioned above, mainly altering the energy 
“noise” due to the intrinsic discretization error, 
it is also possible to identify true 
configurational changes modifying the domain 
geometry and therefore leading to “physical” 
energy changes. Among those, some are in 
general to be avoided via restriction such as the 
boundary changes (i.e. making the domain 
larger or smaller), but also those related to crack 
geometry, which are central to the present study 
on crack propagation. However, because of 
always existing discretization error, also 
physical energy variations due to “true” 
configurational changes will in general be 
affected (and may be distorted) by 
discretization “noise”. To reduce this effect 
different strategies can be applied, i.e. local grid 
refinement (LGR) procedures to parametrize 
the zone of interest, or the use of higher-order 
elements to discretize the domain.  

3 MODEL IMPLEMENTATION 
On the basis of the above considerations and 

concepts, a finite element strategy has been 
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developed for representing the development of 
cracking along non-pre-established paths [13]. 
It is based on the existing and broadly-tested 
approach of using traditional zero-thickness 
interface elements [14] in combination with a 
fracture-based constitutive law [3], while the 
continuum remains elastic at all times. That 
approach has been modified to systematically 
evaluate configurational forces, and re-orient 
newly opening interface elements on the basis 
of those forces (Figure 1). The change of nodal 
coordinates is limited to small steps depending 
on mesh discretization, in order to avoid 
excessive mesh distortion or overlap. Every 
time  interface elements have been reoriented, a 
“mesh relaxation” algorithm (e.g. [15] - [16]) is 
applied to improve mesh quality around the 
modified area (Figure 2). All nodes relocated 
require a mapping and update of the 
corresponding nodal variables in order to 
maintain consistency of the results. This 
procedure is done by interpolation of the 
variables in the new position with respect to the 
previous mesh configuration (Figure 2). 

 
 

 
Figure 1: Representation of configurational force 

direction on the crack tip node 
 
The change of location will be allowed 

gradually because too many simultaneous 
changes could destabilize the iterative process, 
only fracture tip nodes of the interface elements 
that begin to open (change of elastic to elasto-
plastic state) are allowed to change their 
configurational position. The details of this and 
other auxiliary procedures involved in the 
implementation are described in [13]. 

 

 
Figure 2: Mapping of the changed node, 

interpolation over the element on the old configuration  
 

4 EXAMPLES 
This section includes two examples of 

application. The first one consists of a square 
homogeneous block discretized by continuum 
elements and subject to uniaxial tension, and 
configurational changes only affect the internal 
continuum mesh discretization. It is a useful 
example to illustrate the nature of 
configurational forces and of the energy 
minimization involved in the configurational 
iterative process. The second example consists 
of a three-point bending beam in which a crack 
develops along the central cross-section.  The 
mesh is initially random and will get properly 
aligned during configurational iterations. 

4.1 Tensile homogeneous block 
This example has been already used in 

configurational mechanics literature [10]. It 
consists of a homogeneous square elastic block 
with parameters E=1085.7 MPa and ν = 0.3571. 
Loading consists of a tensile displacement 
prescribed on the top side, while displacements 
are fixed on the bottom side (Figure 3). The 
block is discretized using a regular mesh of 16  
quadrilateral elements as shown in Figure 4, 
where the solid nodes indicate the nodes that are 
“configurationally fixed” (i.e. those that will 
not be allowed to move even if their 
configurational forces are not zero), while the 
hollow ones are “configurationally free”, i.e. 
they are allowed to change location through 
configurational iterations. 
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Figure 3: Deformational boundary conditions. 

 

 
Figure 4: Finite element discretization, with indication 
of nodes that are “configurationally fixed” (solid) and 

“configurationally free” (hollow).   
 

In this problem, configurational forces (with 
minus sign) are concentrated on the boundary 
nodes that are configurationally fixed (Figure 
5), with such proportion that if scale is adjusted 
to those, the forces on inner nodes cannot be 
even visualized. Physically, this may be 
interpreted as that, if domain dimensions would 
be increased slightly (but final node positions 
would remain constant), total energy would 
decrease. To explain this, one has to take into 
account two counteracting effects. On one side, 
tensile deformations would be lower (because 
initial and final positions of nodes would be 
closer) and therefore volumetric energy density 
would be lower, but on the other side, total 
volume would be larger. Out of those effects, 
the decrease of specific energy would be 
dominant because is a quadratic relation. From 
the relocation method itself, it makes sense to 
fix configurational movements on the boundary 
so that domain dimensions will not change and 

only internal configurational forces (Figure 6) 
are allowed to change the material 
configuration, and therefore node relocations 
will reflect only the mesh rearrangement to 
reach an energy minimum 
 

 
Figure 5: Configurational forces (with minus sign) on 

all nodes of the mesh, at the scale dictated by larger 
forces on the boundary nodes. 

 
 

 
Figure 6: Same as Fig.5, but only for internal nodes, 
and using a larger scale  forces so that forces on those 

nodes would be represented. 

 
Figure 7 represents the final position of the 

nodes after the progressive relocation due to 
configurational iterations. As Figure 7 shows, 
nodes with larger configurational forces exhibit 
larger position changes. Since this optimal 
corresponds, not to a real geometry change of 
the domain but to the minimization of the FE 
discretization energy, which may be affected by 
discretization error, this solution turns out not 
trivial and might be different for other meshes 
or other element types.  
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Figure 7: Mesh configuration leading to an energy 

minimum. 
 
 

Figure 8 depicts the total energy of the mesh 
as a function of the y-coordinate position of the 
most relevant node in this example, and Figure 
9 the norm of the configurational forces of 
internal nodes, also as a function of the same 
vertical position of the relevant node. It can be 
seen as the node approaches it optimal position, 
energy comes to a minimum and forces are 
reduced to zero norm. 
 
 
 

 
Figure 8: total block energy evolution with respect to 

vertical coordinate of the “relevant node”. 

 
Figure 9: Norm of configurational forces with respect 

to the vertical coordinate of the “relevant node”. 
 

4.2 Three-point beam bending test 
The second example of application consists 

of the 5×1m three-point bending beam test 
represented in Figure 10, which is discretized 
initially with a random triangular mesh. The 
three-point bending test is a good example to 
verify cracking along non-pre-established path 
because, due to symmetry, it is known that the 
crack path should develop vertically along the 
plane of symmetry, and starting from the 
bottom face of the beam. If the process works 
correctly, the initial zig-zagging mesh lines 
should get realigned to this vertical crack path. 

Deformational boundary conditions consist 
of vertical constraints at the two lower corners 
of the beam, and a node at the middle of the 
upper face with horizontal displacements 
restricted. The loading consists of vertical 
displacements at this point prescribed with an 
increasing descending value (Figure 10). 

 

 
Figure 10: Boundary conditions of three-point bending 

test example. 

 
The beam is discretized into triangular 

elements of quadratic order in order to reduce 
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the discretization error (Figure 11). Due to the 
expected crack trajectory, and to deal with 
increasing complexity, a zero-thickness 
interface elements are pre-inserted along a 
single line zig-zagging around the symmetry 
line of the beam (red line in Figure 11). 

The continuum material is assumed linear 
elastic (small strain), with Young’s modulus 
value E = 15000MPa and Poisson’s ratio ν = 
0.0.The constitutive model for the interface is 
the fracture-based constitutive model described 
in  [14], with the following parameter values: 
normal and tangential elastic stiffness  
KN = KT = 107MPa/m, friction angle tanφ = 0.7, 
tensile strength χ = 3MPa, cohesion c = 6MPa, 
fracture energy mode I, GIf = 10−2MPa·m, 
energy mode IIa,  GIIaf = 10−1MPa·m and 
normal stress at which dilatancy vanishes, σdil = 
30MPa.  

 

 
Figure 11: Initial configuration of beam bending 

realignment. 
 

 
Figure 12: Final configuration of beam bending 

realignment. 

 
Figure 13: Three-point bending test deformation after 
solving the deformational and configurational problem 

(displacement magnification x100). 

 
As Figure 13 depicts the failure is initialized 

at the center of the lower face of the beam. As 
expected, due to the symmetric setup the crack 
path propagates upwards. In Figure 12 and 
Figure 13 the final state of the beam is depicted. 
The figures show that the iterative 
configurational process succeeds in orienting 
the crack along the correct vertical direction 
(Figure 12). 

In the figures, red lines correspond to the 
zero-thickness interface elements which have 
not started cracking yet, and therefore, in the 
scheme implemented they have not triggered 
the process of moving nodes (although some of 
them may have changed orientation if they 
share nodes with an interface which has started 
cracking, such is the case of the top interface in 
Figure 12 and Figure 13). Blue lines correspond 
to the interface elements that have started 
cracking, and therefore configurational forces 
may have moved them to an optimal position. 

 

 
Figure 14: Three-point bending test load-displacement 

curves. 
Figure 14 displays two load-displacement 

curves, the one obtained for the initial 
configuration fixed (mesh with the distorted 
crack trajectory), and the other one obtained 
after crack realignment (solving the FEM 
problem with the final configuration, mesh with 
the vertical crack path). As it could be expected, 
the load-displacement curve obtained from the 
final configuration exhibits a lower, more 
realistic peak and post-peak response. This is 
because in the final configuration interface 
elements are better oriented and therefore the 
crack initiates and propagates with lower 
applied load values. 

5 CONCLUDING REMARKS 
This article is focused on the prediction of 

cracking along non-preestablished path, in 
particular, via realignment of zero-thickness 
interface elements which have been pre-
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inserted in the FE mesh. The criterion used to 
determine crack orientation is the global energy 
gradient with respect to mesh nodal 
coordinates, information that is provided by the 
so-called configurational forces. Once these 
nodal pseudo-forces are evaluated, they 
indicate in which direction each node would 
have to be moved in order to approach a global 
energy minimum. The moving of the nodes is 
implemented in an iterative manner. In order to 
get a stable procedure, a careful selection is 
required of the nodes to be moved at a time, in 
this case only crack tip nodes will be moved. 
Moreover, small steps are used to get a gradual 
relocation. If the crack is propagating, physical 
energy changes are expected to be greater than 
discretization error noise; however, this 
condition must be ensured by proper mesh 
refinement or appropriate polynomial degree of 
the interpolation functions. Additionally, a 
number of complementary algorithms have 
been introduced to improve the strategy such 
as: (a) a “mesh relaxation” algorithm to avoid 
mesh distortion, (b) the mapping of nodal 
variables on their new location, and (c) a new 
indirect displacement control iterative 
procedure based on prescribed values of 
fracture energy dissipation. The proposed 
model has been preliminary verified with a 
three-point beam example in which a single line 
of zig-zagging zero-thickness interface 
elements succeeds in getting realigned to a final 
vertical crack as required by symmetry. On-
going work aims at developing further and 
improving the approach described and 
extending its application to more complex cases 
of cracking and fracture. 
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