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Abstract. Concrete being a composite, heterogeneous material, an accurate prediction of its be-
haviour under combined bending and shear is an open problem. In this work, a method is proposed to
address this problem by bringing an equivalence between the normal stress (o) and shear stress (7).
Finite element modelling is used as a tool for predicting the response of plain concrete beams under
mode I and mixed mode I-II loading. Beams of three different sizes are modelled using finite element
analysis and the results are validated through available experimental data. The proposed method con-
siders a scaling factor, which is in proportion to the relative contribution of shear and normal stress.
It is observed that the same amount of energy is associated with behaviour under a pure normal stress
and a combined normal and shear stress field and consequently, a ratio is proposed to convert shear

stress to an equivalent normal stress.

1 INTRODUCTION

Engineering structures such as bridge decks,
offshore structures, pavements, wind towers etc.
are subjected to a large number of load cycles
during their service life. In general, these struc-
tures are subjected to a combination of stresses,
due to asymmetries in geometry and complex-
ities in loading. The failure of these structures
could be due to fatigue under flexure, shear, tor-
sion, or a combination of these. Concrete be-
ing a composite, non-homogeneous and non-
isotropic material, an accurate determination of
fatigue life under combined bending and shear
remains an open problem.

For a quasi brittle material like concrete, the
mechanism of fatigue is characterised by the
formation of microcracks ahead of the crack
tip known as a fracture process zone. These
cracks eventually coalesce to form a propagat-
ing macro crack [[1]. Although structural com-

ponents in reality are frequently subjected to
shear stresses, the behaviour of concrete under
shear is not yet clearly understood. The shear
behaviour of concrete beams depends on the
development of two shear load transfer mech-
anisms namely, arch action and beam action.
The extent of arch and beam action depends
highly on the shear span to depth ratio of the
beam [2]. Further studies are required to in-
vestigate the shear failure behaviour of concrete
beams for various positions of loads that trig-
ger shear cracks. This is critical for heavily re-
inforced beams and deep beams for which the
predominant mode of failure is shear.

Many studies have been conducted to anal-
yse plain and reinforced concrete beams under
shear or a combination of shear and bending for
both monotonic and fatigue loading. Ballatore
et al. [3]] studied two potential failure mecha-
nisms, namely flexural failure at supports and


grassl
Typewritten Text
https://doi.org/10.21012/FC10.233301

https://doi.org/10.21012/FC10.233301

V.Radhika and J.M.Chandra Kishen

mixed mode cracking, in concrete beams un-
der four point bending by varying the distance
between loading points. Mixed mode crack
propagation was observed for smaller separa-
tion between load application points and larger
depth of beam. Shear behaviour of reinforced
concrete beams without stirrups was studied by
Khuntia and Stojadinovic [4] and they proposed
an approach that can be applied to members
with any shear span to depth ratio, reinforce-
ment ratio, concrete strength, presence of ax-
ial compression/tension, member size, loading
type, and support conditions. Dong et al. [3]
compared various stress based criteria for anal-
ysis of concrete specimens under mixed mode
loading and concluded that mode II stress in-
tensity factor has a significant impact on ini-
tial cracking load and crack propagation direc-
tion. Carmona et al. [6]] conducted experimental
studies on mixed mode crack propagation in re-
inforced concrete beams using asymmetrically
notched specimens and observed that the final
stretch of crack propagation induced a sudden
drop in carrying capacity of the beam. Another
model proposed by Gallego et al. [7] suggests
that fatigue failure occurs when the propaga-
tion of diagonal crack has reduced the depth
of compression zone so that it cannot resist the
compressive stresses acting on it. But the meth-
ods available from literature are quite complex
and give a large scatter in results because of nu-
merous interacting parameters such as concrete
strength, specimen size, shear span to depth ra-
tio etc. In addition, it is found that the mod-
els available to predict crack propagation un-
der flexure have a better correlation with ex-
perimental results. Converting the actual mixed
mode loading to an equivalent mode I loading
would simplify the analysis considerably. This
could be done by considering a scaling factor
between the contribution of normal stress and
that of shear stresses. Anes et al. [8] proposed a
stress scaling factor to convert the different ap-
plied stresses to a common stress space in case
of metals. It was based on the assumption that
different stress amplitudes in tensile and shear
loading can lead to the same fatigue life. A

stress scaling factor was defined considering ax-
ial stress amplitude and ratio of axial stress to
shear stress as parameters. Another stress based
criteria was proposed by Sajjadi et al. [9] for
analysing a mixed mode problem by converting
to an equivalent mode I problem. An equiva-
lence of tangential stress was considered as the
base for this approach.

The review of literature shows that the con-
cept of scaling factor has been applied to met-
als and rocks by adopting a stress-based crite-
rion. Such an attempt has not been reported on
concrete. Considering the heterogeneity of con-
crete and possible combinations of loading, the
complexity of the problem increases. Conse-
quently, an energy based approach is suitable
for modelling a quasi brittle material such as
concrete as it avoids the need to consider sin-
gularity at crack tip.

In the present work, a method is proposed to
bring in the normal and shear stresses to a com-
mon stress space using a scaling factor. A sys-
tematic procedure is developed in order to anal-
yse plain concrete beams under mixed mode I-11
loading conditions and define the scaling factor
using the concept of energy equivalence.

2 PROPOSED METHOD

Plain concrete beams subjected to three point
bending are considered in this work. Initially
a finite element model for a beam subjected
to monotonically increasing vertical displace-
ment is set up in a commercial finite element
code (ATENA) and the results are correlated
with available experimental observations. The
model is then calibrated to obtain a good agree-
ment between the load-CMOD behaviour ob-
tained from finite element analysis (FEA) and
experimental results. Once the calibrated mate-
rial properties are obtained, this model is further
used to analyse the beam under several mode I
and mixed mode I-1I loading conditions. From
the area under load-CMOD behaviour in each
case and using the concept of energy equiva-
lence, a method is proposed to separate the con-
tribution of normal and shear stresses. The var-
ious steps involved are discussed in the subse-
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quent sections.

3 CALIBRATION OF FE MODEL

Beams of three different sizes under three-
point bending are modelled using the finite el-
ement code ATENA. The specimens subjected
to monotonically increasing vertical displace-
ment at midspan are considered for calibrating
the model. Geometry, material properties and
experimental results taken from Keerthana and
Kishen [[10] are used for this purpose. All spec-
imens are geometrically similar with a notch to
depth ratio of 0.2. Details of specimen geome-
try are tabulated in Table

Table 1: Geometry of specimens

Depth  Thickness

Specimen  Span

S(mm) D(mm) B(mm)
Large 1200 300 50
Medium 600 150 50
Small 300 75 50

The material model in ATENA is based on
the fictitious crack model [11]] and the propaga-
tion of crack is governed by exponential crack
opening law. Stress strain behaviour is defined
through equivalent uniaxial law which takes
into account the non-linear behaviour of con-
crete in compression and tension as well as re-
duction in compressive strength after cracking.
Beams are meshed using isoparametric quadri-
lateral elements and subjected to displacement-
controlled load applied in steps of 0.0lmm.
Load versus CMOD behaviour obtained from
FE analysis are compared with experimental
curves and the material properties are calibrated
so as to get a good match with experimental re-
sults as shown in Figure 1. It can be observed
that the initial slope and maximum load val-
ues are in good agreement with experimental re-
sults. The final calibrated material properties in
the FE analysis are tabulated in Table [2]and this
calibrated model is now used for further analy-
sis under mixed mode loading conditions.
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Figure 1: Load-CMOD curves for (a) large (b) medium
and (c) small specimens

4 ANALYSIS FOR MIXED MODE
LOADING CONDITIONS

Two sets of analysis, as represented in Fig-
ure 2] are carried out on plain concrete beams
of three different sizes. In set 1, a notch is po-
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sitioned at the same cross section as the load
and the position of both together are varied
across the span of the beam, i.e. dp = dy and
0 < (dp,dxn) < L, where L is the span of the
beam and dp and dy are the distances of point
of load application and notch respectively, both
measured from left support. In this case, crack
which initiates from the critical section propa-
gates vertically upwards towards the load ap-
plication point under the influence of normal
stresses alone. Thus, predominant mode I con-
ditions exist at the crack tip for set 1.

Table 2: Calibrated material properties

Compressive strength, f., 56 MPa
Modulus of Elasticity, £ 29400 MPa
Tensile strength f; 3.6 MPa
Poisson’s ratio, 1 0.12

Fracture energy, Gy 0.16 N/mm
==
1o} .
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Figure 2: Schematic representation Set 1 and Set 2

In set 2, the position of notch (dy) is kept
fixed near midspan of the beam and the point
of application of load (dp) is varied across the

span, 0 < dp < L. Here, the crack propagates
in an inclined direction from the tip of the notch
towards load point under the influence of both
normal and shear stresses, making this a mixed
mode case. Under each set 8 to 10 cases are
considered by varying the values of dp and/or
dy. The FE mesh and crack propagation under
mode I and mixed mode loading are shown in

Figure 3]
The specimens considered in this study are
labelled in the following format with variables:

XYZYZ

X- {L, M, S} indicating size of the specimen
as large, medium or small

YZ- indicates the position of notch/load. The
first YZ corresponds to position of notch and
the second YZ corresponds to position of load.
Y- {R, L} indicating the position of notch/load
from mid span. R indicates that notch/load is
towards the right of mid span and L indicates
that it is towards left of mid span.

Z- {0 — 50} indicating the ratio of distance of
notch/load from mid span to span of the beam
multiplied by 100.

For example, M_R10_L25 corresponds to a
medium beam with notch positioned at a dis-
tance of 0.10S towards right half and load at
0.25S towards left half of the beam (Figure @)
with S being the span.

Figure 3: Crack propagation under mode I and mixed
mode I-II loading
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0.255
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Figure 4: Geometry of M_R10_L25

S RESULTS AND DISCUSSION

Load versus CMOD curves are obtained for
both sets of analysis for all three sizes of beams.
The typical behaviour of plain concrete beams
under monotonic loading is observed in all
cases. Load increases with increase in CMOD
up to a maximum and then gradually reduces
to zero. This post peak behaviour, referred
to as softening, is a result of various toughen-
ing mechanisms in concrete such as crack de-
flection, micro crack shielding, crack tip blunt-
ing, grain bridging crack bridging etc. Load-
CMOD plots from each set of analysis for large,
medium and small beams are presented in Fig-
ure 5 and the area under each graph is computed
to give energy at fracture. It is to be noted that
only four cases from each set of analysis are
presented in Figure 5 for clarity.

The results are explained based on the fol-
lowing suppositions:

1. Since bending moment as well as shear
force at critical section are linearly pro-
portional to the vertical load, stresses are
computed considering the magnitude of
load to be unity (1 kN).

2. The crack propagation occurs under a
bending stress of M, /z and shear stress
of V,/BD, where M, and V, are the
bending moment and shear force at crit-
ical section and B and D are the width
and depth of the specimen. Here, only the
maximum normal and shear stress in the

uncracked cross section is considered for
analysis.

From Figure [3] it can be observed that as
the bending moment (or normal stress) at the
critical section decreases, area under the load-
CMOD curve is larger indicating higher energy
for fracture. This remains true for both mode I
as well as mixed mode loading cases for large,
medium and small beams. Energy at fracture
computed in each case of set 1 and set 2 is now
used to define the concept of scaling factor as
explained in the next section.

5.1 Concept of Scale factor

When a crack propagates under mode I, the
total energy at fracture is a contribution of nor-
mal stress alone. But in case of mixed mode
crack propagation, the total energy is associated
with a normal as well as a shear stresses. Fig-
ure [6] shows a typical plot of maximum stress
at the critical section versus energy at fracture
for both set 1 and set 2 analysis. Under set 1,
maximum stress at the critical section has only
a normal component. By varying the value of
dy and dp together, we obtain mode I load-
ing with varying normal stress at critical sec-
tion and each loading case will have a corre-
sponding energy at fracture. The curve denoted
as o(Mode I) in Figure [0 is obtained by plot-
ting the maximum normal stress in each case
against corresponding energy at fracture. Sim-
ilarly, for set 2, maximum stress at critical sec-
tion will have both shear and normal compo-
nents. When the value of dp is varied, the re-
sulting cases correspond to mixed mode load-
ing conditions, each one with different value of
normal and shear stress. The curve denoted as
o(Mode I-1I) and 7(Mode I-1I) are obtained by
plotting the max normal stress and shear stress
at critical section respectively against the mag-
nitude of energy at fracture.

In Figure [6] AC is the magnitude of nor-
mal stress under mode I loading (o) and AD
and AB are the magnitudes of normal (o) and
shear stresses (7p) respectively, under mixed
mode loading, all of which corresponds to a
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Figure 5: Load versus CMOD for set 1 and set 2
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given magnitude of energy for fracture, de-
noted by point A. Hence, the energy at frac-
ture for a pure mode I case subjected to nor-
mal stresses at the critical section is same as
that for a mixed mode I-II case subjected to
normal and shear stresses. In other words,
Eo. = E(op415)- As observed earlier, from the
load-CMOD behaviour, the energy at fracture
associated with a higher normal stress is lower.
Consequently, £, > E,,. This difference in
energy corresponds to the difference in nor-
mal stresses in mode I and mixed mode load-
ing (cc —op = o¢p) and is compensated by
the shear stress in mixed mode loading (75).
Hence, the contribution to energy by normal
stress oo p can be considered equivalent to that
of shear stress 75. Using this concept of en-
ergy equivalence, a scaling factor can be defined
based on the ratio o p/7p for converting a given
mixed mode problem to an equivalent mode I
problem.
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Figure 6: Illustrative case for definition of scaling factor

Figure [/| shows the energy at fracture asso-
ciated with maximum stress at critical section
for large, medium and small beams. In all sizes
of beam, the same trend as explained above is
observed.
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Figure 7: Variation of energy at fracture with maximum
stress at critical section for (a) large (b) medium and (c)
small beams

5.2 Size Effect

Three different sizes of specimens are con-
sidered in this analysis. Based on the load-
CMOD curves from set 1 analysis for large,
medium and small beams, it can be observed
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that, for the same position of notch/load, as
the size of specimen increases, the total area
under load-CMOD curve increases and maxi-
mum stress corresponding to unit load at crit-
ical section decreases. The variation of loga-
rithm of total energy for fracture with logarithm
of normal stress at the critical section for the
three beam sizes for different mode I cases are
plotted in Figure [8] It is observed that for the
same magnitude of normal stress, energy for
fracture is highest for small specimen. Also, it
can be noted that the linear trend lines for all
three sizes are nearly parallel indicating a sim-
ilarity in behaviour under monotonic loading.
This could imply that the scaling factor, when
expressed quantitatively, would exhibit a linear
variation with size of specimen.
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Figure 8: Illustration of size effect

6 CONCLUSION

In this work, an attempt has been made to
propose a method to bring normal and shear
stresses in plain concrete to the same stress plat-
form. A scaling factor is defined based on the
concept that the same amount of energy at frac-
ture is associated with a mode I and a mixed
mode I-II loading conditions. This factor is
found to be dependent on the magnitudes of
maximum shear and normal stress at the criti-
cal section as well as the size of the specimen.
Once the scaling factor is quantified in terms
of stresses at critical section, conversion of a

mixed mode problem to an equivalent mode I
problem can easily be achieved. Also, since
large, medium and small sized specimens ex-
hibit a similar behaviour under mode I loading
conditions, the scaling factor is also expected
to vary linearly with size. Research work is
in progress to obtain the numerical form of the
scale factor.
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