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Abstract. A microplane model is proposed to simulate the behavior of concrete at static and tran-
sient loading conditions. For that purpose, the model addresses several major characteristics in such
loading scenarios by a coupled viscoplasticity-damage approach. The developed microplane yield
function accounts for the realistic description of the different material responses in multiaxial tension
and compression as well as the nonlinear material response at high volumetric pressure and the rate
dependency of the concrete. Moreover, a penalty function to enable a stable and robust return mapping
is developed. A damage approach considering proper stiffness degradation and crack closing effects
is utilized. Furthermore, the model is regularized by an implicit gradient enhancement. The model is
implemented within a 3D finite element code and the capabilities of the formulation are evaluated by
several comprehensible numerical studies in comparison with experimental observations and results.

1 INTRODUCTION

Due to its heterogeneity, the material be-
havior of concrete has complex characteristics
depending on the loading conditions. Thus,
the computational modeling of concrete is chal-
lenging, especially in terms of finding a math-
ematical description of the material, which is
able to consider the necessary properties con-
cerning a particular application. The aim of
this work is to propose a constitutive approach,
which addresses the experimentally observed
specific properties of concrete at triaxial static
and transient loading. In particular for multiax-
ial loading, the strongly different material re-
sponse at tension and compression loading is
in the focus of this work. Furthermore, pore
collapse of concrete at high volumetric pres-

sure is considered as well as rate dependent be-
havior, which is essential for transient loading
cases like impact scenarios. One highlight of
the presented model is the plasticity formula-
tion based on a rate depended modified three
surface cap yield function with consideration of
the third stress invariant and combined isotropic
and cap hardening mechanisms. The degrada-
tion of the material is modeled by a plasticity
driven damage approach, which distinguishes
between tensile and compressive failure and al-
lows the transition between these states. In or-
der to overcome possible localization phenom-
ena, a gradient enhancement of the damage ap-
proach is used. Both the plasticity and the
damage formulation are implemented into a mi-
croplane framework to take into account the in-
duced anisotropy of the material. The capabili-
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ties and advantages of the model are shown and
discussed by some examples.

2 MODEL FORMULATION
2.1 Microplane Framework

In the literature, several microplane mod-
els with different stress and strain projection
approaches as well as constitutive laws are
presented. Here, the model proposed in [1]
is adopted, which is formulated in a thermo-
dynamically consistent way. The model ap-
plies the kinematic constraint, i.e. the mi-
croplane strains are assumed to be equal to the
projection of the macroscopic strain tensor to
the microplanes. Furthermore, a volumetric-
deviatoric (V-D) split of the microplane strain
and stress quantities is utilized, with the corre-
sponding projection tensors V and Dev, re-
spectively. Hence, the relation between the
macroscopic strain tensor ε and the microplane
strains is given as

εV = V : ε , εD = Dev : ε. (1)

By decomposing the strains in an elastic and a
plastic part and considering the damage by one
damage parameter applied to both the volumet-
ric and deviatoric stress parts, the stress strain
relation reads

σ =
3

4π

∫
Ω

(1− dmic)[KmicV (εV − εplV )

+ 2GmicDevT · (εD − εplD)]dΩ,

(2)

where Kmic and Gmic are the microplane bulk
and shear moduli. Integration over the surface
of the microplane unit sphere is achieved by a
numerical integration scheme using 21 indepen-
dent microplanes. The evolution of the plastic
strains is described by the following flow rules

ε̇plV = λ̇mV , ε̇plD = λ̇mD, (3)

where λ is the plastic multiplier. The corre-
sponding flow directions mV and mD are de-
rived from the microplane yield function fmic

as follows

mV =
∂fmic

∂σV
, mD =

∂fmic

∂σD
. (4)

The microplane effective stresses are defined as

σV = Kmic
(
εV − εplV

)
, (5)

σD = 2Gmic
(
εD − εplD

)
. (6)

The microplane bulk modulus Kmic and shear
modulus Gmic can be derived from the from the
macroscopic ones by

Kmic = 3K , (7)

Gmic = G. (8)

2.2 Smooth Rate dependent Microplane
Cap Yield Function

In order to capture the complex triaxial be-
havior of concrete, a microplane yield func-
tion is proposed, which is based on the work
of [2]. It consists of the adopted Drucker-Prager
function expressed in terms of the microplane
stresses and enhanced by a tension and com-
pression cap. Moreover, the third stress invari-
ant J3 is considered in order to distinguish be-
tween triaxial tension, triaxial compression and
shear loading states. The proposed yield func-
tion is shown in Fig. 1 and reads

fmic =
3

2
σD · σD − f 2

1 ft fc + fP , (9)

Figure 1: Initial smooth microplane cap yield function

where ft and fc are tension and com-
pression caps, respectively. f1 is the mi-
croplane Drucker-Prager function containing
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the isotropic hardening function fh and the rate
dependent viscoplastic function fvp,

f1 = σ0 − ασV + fh(κ) + fvp(λ̇). (10)

For the viscoplastic function, a consistency type
formulation based on [3] is adopted,

fvp = ηvpλ̇, (11)

where ηvp is a viscosity parameter. The
isotropic hardening is linearly driven by the in-
ternal variable κ

fh = Dκ, (12)

where D is a material constant. The evolution
of κ is simply given as

κ̇ = λ̇. (13)

The compression cap is defined as

fc = 1−Hc (q − σV )
(σV − q)2

X2
, (14)

X = Rf1(q), (15)

where R is the volumetric-deviatroric axis ra-
tio. q is an internal variable describing the
intersection point between the Drucker-Prager
function and the compression cap with an ini-
tial value σCV being a material constant. More-
over, q drives the movement of the compression
cap, called cap hardening. The cap hardening
describes the densification of the concrete due
to pore collapse at high volumetric pressure ac-
cording to the Hugoniot curve of the material.
Especially, at high dynamic loading conditions,
where inertia induced high confinement pres-
sures may occur, this densification process has a
strong influence on the wave propagation in the
material and is the reason for the evolution of
shockwaves. The Hugoniot curve basically de-
scribes the nonlinear relation between volumet-
ric strains and volumetric pressure. Here, the
Hugoniot curve for concrete is approximated by

εplV = hq(q) = W (eD1(χ(q)−χ0) − 1), (16)

where W is the maximum plastic volumetric
strain at hydrostatic compression and D1 is a

material constant. χ and χ0 are the current
and initial volumetric abscissa of the cap, re-
spectively. Therefore, the internal variable q in-
creases according to the evolution law

q̇ = λ̇ Hc
∂fmic

∂σV

∂hq
∂q

= λ̇mq. (17)

The tension cap defined as

ft = 1−Ht

(
σV − st σTV

)
·
(
σV − st σTV
T − st σTV

)2+A
σeV −σTV
T−σT

V
,

(18)

T = T0 +Rtfh(κ) + fvp(λ̇), (19)

where σTV , Rt, T0 and A are material parame-
ters. σTV is the initial abscissa of the intersection
point between the tension cap and the Drucker-
Prager yield function, and T0 is the initial inter-
section of the tension cap with the volumetric
axis. Due to hardening and rate effects, the cur-
rent intersection point T increases, where this
increase is controlled by the parameter Rt. A
is a shape parameter controlling the steepness
of the cap. The Heavyside functions Hc and Ht

are defined as

H(x) =
1

2
(1 + sign(x)), (20)

activating the particular caps when the stress
state is within their domain. The scaling func-
tion st moves the initial intersection point σTV
depending on the triaxial loading conditions
quantified by the third stress invariant J3 and
the Lode angle

θ =
1

3
cos−1

(
3
√

3 J3

2 J
3/2
2

)
, (21)

calculated from the macroscopic stress tensor
of the previous time step. This formulation en-
ables a shaping of the cross-section of the yield
function. Here, the Willam-Warnke approach
for shaping the cross-section [4] is adopted and
the Lode angle dependent radius of the cross-
sections reads
r(θ) = [2(1− e2) cos(θ)

+ (2e− 1)
√

4(1− e2) cos2(θ) + 5e2 − 4e]

/[4(1− e2) cos2(θ) + (2e− 1)2],
(22)
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where 0.5 ≤ e ≤ 1 is an eccentricity parame-
ter. However, the scaling function for shaping
the cross-section is given as

st = − T0

σTV

(
1

r2 r0

− 1

)1/st0

, (23)

st0 = 2 + A
−σTV

T0 − σTV
, (24)

r0 = 1−
(
−σTV

T0 − σTV

)st0
. (25)

Since, the shaping of the cross-section is re-
alized by the movement of the intersection
point between the Drucker-Prager function and
the tension cap, the influence of the scaling
function decreases with increasing volumetric
stresses and vanishes in the intersection point.
That means, the Drucker-Prager part and the
compression cap have always a circular cross-
section. st is constructed in such a way, that
the cross-section in the π-plane is forced to be
exactly the in r(θ) prescribed shape. How-
ever, the proposed mathematical formulation
of the tension cap might lead to non physi-
cal results, because it creates a second domain
of valid stress states as an adverse side effect,
which allows stress states with higher volumet-
ric stresses than T . In order to suppress this non
physical domain, a penalty function is added to
the yield function and defined as follows

fP = −P HP (σV − T ) (σV − T )2 , (26)

where P is a penalty parameter.
Due to the multiplicative coupling of the
Drucker-Prager function and the proposed cap
functions, a smooth C1-continuous microplane
yield surface is achieved, which offers several
numerical advantages.

2.3 Damage Evolution
Modeling the damage initiation and evolu-

tion of concrete at cyclic loading, it is neces-
sary to consider the different damage character-
istics in tension and compression as well as the
transition between these states. Here, a damage
model introduced in [1] is used, which decom-

poses the effective damage dmic into a compres-
sion dmicc and a tension part dmict as follows

1− dmic = (1− dmicc )(1− rwdmict ), (27)

where both parts are driven by an exponential
evolution law

dmict = 1− exp(−βtγmict ), (28)

dmicc = 1− exp(−βcγmicc ). (29)

βt and βc are material constants. rw is the split
weight factor describing the transition between
tension and compression states and is defined as

rw =

∑3
I=1

〈
εI
〉∑3

I=1 |εI |
, (30)

where
〈
εI
〉

is the positive part of the I-th
macroscopic principal strain. The rate of the
equivalent strains is a function of the volumetric
plastic strain rate as follows

η̇mict =

{
rw ε̇

pl
V ε̇plV > 0

0 ε̇plV ≤ 0
, (31)

η̇micc =

{
(1− rw)ε̇plV ε̇plV > 0

0 ε̇plV ≤ 0
. (32)

2.4 Implicit Gradient Regularization
The implicit gradient enhancement can be

seen as a regularization method in order to over-
come localization issues by a spatial averaging
of a local variable. This averaged value is con-
sidered as an extra nonlocal degree of freedom
and described by a partial differential equation
in addition to the balance of linear momentum.
Hence, the strong coupled field problem reads

∇ · σ + f = 0, (33)
η̄m − c∇2η̄m = ηm, (34)

where σ is the Cauchy stress tensor and f is
the body force vector. The nonlocal interaction
is controlled by the gradient parameter c. More-
over, homogeneous Neumann boundary condi-
tions are applied to the nonlocal field. The
evolution of the nonlocal variable η̄m is driven
by its local counter counterpart ηm as a source
term. Here, the local variables are

ηm =

[
ηmt
ηmc

]
=

[
1

4π

∫
Ω
ηmict dΩ

1
4π

∫
Ω
ηmicc dΩ

]
, (35)

4



Alexander Fuchs and Michael Kaliske

which causes two extra degrees of freedom. In
order to achieve a full regularization of plastic
damage models an over-nonlocal formulation is
utilized, where the over-nonlocal variable η̂mic

is defined as a linear combination of the respec-
tive local and nonlocal variable

η̂mict = mη̄mt + (1−m)ηmict , (36)

η̂micc = mη̄mc + (1−m)ηmicc . (37)

In order to achieve regularization, the material
constant m should be larger than 1. This en-
hanced variables are used to drive the damage
in Eqs. (28) and (29) as follows

γmict =

{
η̂mict − γt0 η̂mict > γt0

0 η̂mict ≤ γt0
, (38)

γmicc =

{
η̂micc − γc0 η̂micc > γc0

0 η̂micc ≤ γc0
, (39)

where γt0 and γc0 are damage treshold for ten-
sion and compression, respectively.

3 NUMERICAL VERIFICATION
Before applying the proposed model in the

simulation of a complex structure, it makes
sense to analyze and verify the characteristics
of the formulation in comprehensible numeri-
cal test simulations. For that purpose, a series
of single element studies addressing different
properties of the model are performed and eval-
uated.

3.1 Uniaxial Tests
In Fig. 2, the results of a quasi-static dis-

placement controlled single element, loaded
cyclicly in tension and compression, are shown.
It can be seen that the first cycles in the tension
domain and especially the stiffness degradation
of the material, are in a good agreement with the
experiments of [5]. Furthermore, the model is
able to consider stiffness recovery when switch-
ing from the tension to the compression do-
main, due to crack closing. By increasing the
compressive load, the compression part of the
damage starts to evolve and the concrete under-
goes compressive failure. It is worth noticing,

that these characteristics are exemplary shown
in a uniaxial testcase, but they are also consid-
ered at multiaxial loading conditions. The de-
scribed properties are important for both static
and transient loading scenarios. Especially un-
der wave propagation, the material experiences
cyclic loading conditions in tension and com-
pression.

Figure 2: Cyclic tension compression transition at uni-
axial loading compared to cyclic uniaxial tension experi-
ments of Karsan et al. [5]

3.2 Multiaxial and Hydrostatic Tests
In this section, the behavior of the mi-

croplane model at multiaxial loading is pre-
sented. Since the different microplanes are
independent of each other, the macroscopic
or effective yield envelope cannot directly be
derived from the microplane yield function.
Therefore, a single element is loaded at several
discrete monotonic biaxial and triaxial stress
paths until the material starts to soften. Fig. 3
shows the biaxial yield envelope (σ3 = 0 MPa)
of the model in comparison to the experiments
of [6].
The yield envelope at triaxial loading is exem-
plarily shown for pure deviatoric loading (σV =
0 MPa) in the π-plane in Fig. 4. The plot-
ted value r(θ) describes the ratio between the
octahedral peak stresses at a certain Lode an-
gle θ and the octahedral peak stresses at triaxial
compression (θ = 60◦). It is obvious, that the
triaxial envelope follows the predefined shape
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from Eq. (22) as desired. It can also be seen,
that the eccentricity parameter e describes the
reduction factor of the octahedral peak stresses
in triaxial tension (θ = 0◦). It should be no-
ticed, that the formulation of the model is de-
signed in a way, that the triangular shape of the
cross-section of the macroscopic yield envelope
reduces with increasing volumetric pressure, in
order to achieve a better agreement with the ex-
periments of [6] in the compression domain.
These examples show the capability of the
model to capture the different behavior at multi-
axial tension and compression, which is one of
the most prominent characteristics of concrete.

Figure 3: Biaxial yield envelope compared to experimen-
tal results of Lee et al. [6]

Figure 4: Yield envelope at triaxial loading conditions in
the pure deviatoric π-plane (σV = 0MPa)

Since concrete is a porous material, it
crushes at high hydrostatic pressure by the col-
lapse of the pores. Crushing and the accompa-
nying densification of the material lead to a non-
linear volumetric response as it is experimen-
tally observed in [7]. This nonlinear behavior
is described by the hardening evolution law of
the compression in Eqs. (16) and (17). Fig. 5
shows the response of the model in a cyclic hy-
drostatic test in comparison to the experiment
of [7]. Especially in transient analysis, where
inertia effects lead to high volumetric pressure,
the nonlinear behavior of the crushed material
induces shockwaves as it is described in [8].

Figure 5: Model response at hydrostatic pressure com-
pared to experimental results of Gabet et al. [7]

3.3 Rate Dependency
The influence of the loading rate is investi-

gated in monotonic uniaxial tension tests at dif-
ferent strain rates. In Fig. 6, the variation of the
stress-strain relation for seven different strain
rates is shown. It can be seen, that the peak
stress and strain increase at increasing strain
rate. This increase is a result of the viscoplastic
formulation of the proposed model leading to a
decreased evolution of the plastic strains and,
therefore, a delayed damage evolution. One
can also see, that the viscoplastic response con-
verges to the linear elastic case at increasing
strain rate, which is a major difference com-
pared to viscoelastic approaches. The results
show the capability of the model to consider the
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strength increase of concrete at dynamic load-
ing. It is worth noticing, that the calibration
and validation of the viscoplastic formulation
should be done on the structural level, since
the dynamic strength increase is influenced by
many effects like inertia and size effects.

Figure 6: Stess strain response for different strain rates at
uniaxial loading

4 CONCLUSIONS
In this contribution, a constitutive model for

plain concrete is presented. The model ad-
dresses several key properties for a realistic de-
scription of the material. First, the model is for-
mulated in terms of the microplane approach,
which can capture the induced anisotropy by
independent evaluation of the different mi-
croplanes. Second, a newly designed smooth
rate dependent microplane cap yield function
with combined isotropic and cap hardening
mechanisms is introduced. This plasticity for-
mulation coupled with the proposed gradient
damage approach provides a realistic and ro-
bust description of the major characteristics at
multiaxial static and transient loading scenar-
ios. By the consideration of the third stress
invariant, the different behavior of concrete at
multiaxial tension and compression can be cap-
tured. The introduced cap hardening mecha-
nism allows the consideration of the nonlinear
volumetric behavior at high hydrostatic pres-
sure according to the Hugoniot curve of the ma-
terial. In order to consider the rate dependent

response of concrete, a consistency type vis-
coplasticity approach is used. Moreover, the in-
troduced penalty function and the smoothness
of the overall yield function enable a stable re-
turn mapping and tangent modulus. The uti-
lized damage split is able to describe the tension
compression transition with the accompanying
stiffness recovery. This makes the model suit-
able for general cyclic loading cases.
The proposed constitutive formulation is ana-
lyzed and verified by comprehensible single el-
ement test simulations investigating the perfor-
mance of the model regarding the addressed
characteristics of concrete. The results of this
study are compared to corresponding experi-
mental results and observations in the literature.
In general, the model gives the desired behav-
ior and is in good agreement with the experi-
ments. Since the model captures several ma-
jor characteristics of concrete, concerning mul-
tiaxial static and transient loading cases, it is
very promising to proceed and validate it on the
structural level. These studies will also show
the capability of the introduced implicit gradi-
ent enhancement to regularize the model and to
eliminate mesh sensitivity caused by the strain
softening constitutive formulations.
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