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Abstract. The Eikonal Non-Local damage model (ENL) is an integral-based regularization method
with damage-dependent non-local interactions. This contribution introduces the transition from an
ENL formulation to a strong discontinuity model in a one-dimensional case. By introducing the
formation of a cohesive crack in highly damaged areas, this new formulation seeks to solve problems
of objectivity of results with respect to the mesh size for regularization methods with evolution of
non-local interactions leading to strain localization.

1 INTRODUCTION

Predicting the cracking of quasi-brittle ma-
terials is a major challenge in the study of the
robustness and durability of civil engineering
structures. Damage models are part of the clas-
sic methods for dealing with these problems.
The implementation of this type of models in
the finite element method results in a pathologi-
cal dependence on the mesh size. The introduc-
tion of a characteristic length in the formulation
makes it possible to find objectivity of the re-
sults with regard to the spatial discretization.

Among the classical regularization methods,
the Integral Non-Local (INL), developed by
Pijaudier-Cabot and Bazant [1], proposes to
control the damage by a non-local variable cal-
culated as a spatial average of its local val-
ues. However, the nature of the INL method

(based on Euclidean distances) can lead to
non-physical interactions, for example through
cracks or strongly damaged zones. To address
this problem, several methods seek to adjust
the non-local interactions using the mechanical
state of the material. For example, Giry et al. [2]
and Pijaudier-Cabot et al. [3] propose to weight
non-local interactions according to the stress or
damage level, respectively.

The non-local eikonal method (ENL) [4]
proposes to weight non-local interactions by the
lengths of the geodesics in a Riemannian space
curved by damage. In this case, the field of
geodesic distances is a solution of an eikonal
equation in which the metric is damage depen-
dent. Rastiello et al. [5] have recently shown
that this formulation allows avoiding diffusion
of the damage zone observed for the INL for-
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mulation. Regularization properties are pre-
served up to a high level of damage. However,
for all these advanced methods, mesh depen-
dence can be observed in the case of the for-
mation of very severely damaged areas. Indeed,
non-local interactions tend to decrease with the
evolution of damage, and the material response
becomes local in these areas.

This contribution proposes to improve the
regularization properties of the ENL method by
considering severely damaged areas as cohesive
cracks. Thus the ENL method is coupled to a
model with strong discontinuity. The transition
from the non-local method to the high disconti-
nuity model is first presented, then the regular-
ization properties of this formulation are illus-
trated using a one-dimensional numerical study
on a bar loaded in tension.

2 EIKONAL NON LOCAL FORMULA-
TION (ENL)

In an isotropic one-dimensional elastic body
Ω, it is possible to quantify the degradation of
the material for any point x ∈ Ω using a scalar
damage variable D(x) ∈ [0, 1] [6]. Beyond the
elastic limit of the material, degradation begins,
and the damage variable increases irreversibly.
For a local damage model, the evolution of the
damage variable D is usually controlled by a
variable εeq(x) expressed as a function of quan-
tities evaluated at the point x.

2.1 Integral Non-Local Method (INL)
For a non-local model, damage evolves ac-

cording to a non-local variable εnleq(x):

D(x) = g
(
εnleq(x)

)
(1)

In particular, in the INL method [1], the non-
local variable corresponds to a spatial average
of its local values:

εnleq(x) =
1

V (x)

∫
Ω

φ

(
`xy
`c

)
εeq(y)dy (2)

V (x) =

∫
Ω

φ

(
`xy
`c

)
dy (3)

where φ is a decreasing weighting function of
the distance `xy separating the two points x and

y. This function is generally chosen as a Gaus-
sian φ(ξ = `xy/`c) = exp (−4ξ2). Parameter `c
corresponds to a characteristic distance defining
the size of the domain outside which non-local
interactions are negligible.

2.2 Non-local method based on internal
time

For the INL method, the distance is simply
the Euclidean distance between the two points.
This distance remains fixed over time. This im-
plies that two points can continue to interact
from a non-local point of view after a crack ap-
pears between them. The principle of the ENL
method is to take into account the damage field
when calculating distances and thus avoid non-
physical interaction problems.

By writing the non-local problem in time
rather than distance, Desmorat and Gatuingt [7]
propose to weight the non-local interactions ac-
cording to the propagation time τxy of an elastic
wave in the damaged environment:

εnleq(x) =
1

V (x)

∫
Ω

φ

(
τxy
τc

)
εeq(y)dy (4)

where τc is a characteristic time. It represents
the time required for an elastic wave to cover
the distance `c in the undamaged environment.
With c0 the initial velocity of the wave, the
characteristic time is related to the characteris-
tic length of the INL method: τc = `c/c0.

In an elastic medium, the propagation time
of a wave is related to the velocity of the wave
and this velocity is proportional to the square
root of the stiffness of the material. In the case
of a damaged elastic medium, the stiffness of
the material is reduced by damage. As a result,
the propagation time of a wave between two
points separated by a damaged area will tend
to increase, and non-local interactions between
these points will be reduced.

This time-based formulation naturally intro-
duces the effect of damage on the non-local be-
havior of the material. However, from a nu-
merical point of view, it is not reasonable (in
two- or three-dimensional settings) to perform a
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dynamic wave propagation calculation for each
loading step and each point in the domain.

2.3 Eikonal Non-local method (ENL)
Using a high-frequency approximation of the

wave equation, Desmorat et al. [4] show that
the non-local propagation time problem can be
written as a function of the effective distances
˜̀
xy corresponding to the geodesic lengths in a

Riemannian space curved by damage. In a uni-
dimensional setting, the effective distance field
is then the solution of the following eikonal
equation:√

1−D(y)

∣∣∣∣ d

dy
˜̀
xy(y)

∣∣∣∣ = 1 (5)

˜̀
xy (y = x) = 0 (6)

In this case, non local damage follows equa-
tion (4). For each time-step, the effective dis-
tance is calculated according to the eikonal
equation.

2.4 Regularization features of the ENL
method

A bar Ω of length L and cross section A (fig-
ure 1) loaded in tension is studied using numer-
ical finite element simulations. The bar material
is modeled with an ENL damage model. In or-
der to trigger the localization, a stiffness defect
is introduced at the middle of the bar through a
weakened finite element. To describe the sys-
tem’s snap-back response in the load post-peak
phase, the applied displacement at the end of the
bar is indirectly controlled by imposing a con-
stant rate of variation to the deformation of the
weakened finite element [8].

Figure 1: Effective distance field in a notched
plane

The material is initially linear elastic. When
the yield strength is reached, degradation begins

to develop. In the calculation, a decreasing ex-
ponential evolution law is used to quantify the
development of degradation:

D = g(κ) = 1− ε0

κ
exp

(
−〈κ− ε0〉+

εc − ε0

)
(7)

with:
κ = max

(
κ, εnleq

)
(8)

In equation (7), ε0 represents the threshold
deformation corresponding to the activation of
the damage process and εc is a critical defor-
mation level. This parameter controls the en-
ergy dissipated in the post-peak stress phase.
The non-local interaction distances between the
integration points of the finite element mesh
are updated at the beginning of each loading
step. In the one-dimensional context considered
here, the effective distance ˜̀

xy between each
pair (x, y) of Gauss points is computed as:

˜̀
xy =

∫ max(x,y)

min(x,y)

1√
1−D(z)

dz (9)

Material parameters used in computations
are given in Table 1.

Table 1: Geometrical and material parameters

L 100 mm
A 5× 10−3 m2

E 100 MPa
ε0 1× 10−4 -
εc 10× ε0 -
`c 20 mm

The results obtained using the ENL formu-
lation are plotted in figures 2 and 3 for three
different mesh sizes (41, 81 and 161 bar-type
linear finite elements). The force-displacement
response curves (figure 2) show that, for low
damage levels, the ENL method provides the
same structural behavior as the classical INL
method because the geodesic distances are close
to Euclidean distances. The damage profiles are
drawn on figure 3 for several loading stations.

When damage reaches values close to unity,
the geodesic distances are much higher than the
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Euclidean distances and the non-local interac-
tion area becomes very small. Once this con-
dition is achieved, the global response corre-
sponds to the one obtained using a local dam-
age model, and a residual dependence on the
mesh size is observed. The same kind of re-
sponse was found by [5]. In other words, the
residual energy still available in the weakened
finite element during the localization phase can
only be dissipated in a local manner.
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Figure 2: Regularization properties of the ENL
method: force-displacement responses com-
puted for three different mesh sizes
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Figure 3: Damage profiles in the bar using the
ENL method (three different mesh sizes).

3 ENL FORMULATION WITH EMBED-
DED STRONG DISCONTINUITIES

This section proposes a first attempt in mod-
eling the failure of quasi-brittle materials us-
ing an ENL damage law coupled with a strong-
discontinuity formulation [9–11]. In this way,
non-local damage allows for modeling diffuse
degradation leading to the localization into a co-
hesive crack. This approach is consistent with
the physics of the problem. Moreover, from a
numerical point of view, the formulation of this
problem in the framework of the embedded fi-
nite element method makes it possible to elim-
inate the residual mesh dependence previously
observed.

3.1 ENL damage to strong discontinuity
transition model

During the first stages of the damaging pro-
cess, the behavior of the material follows equa-
tions (4) and (5). The damage-to-fracture tran-
sition time (at x0 ∈ Ω) is arbitrarily chosen as
the time when D(x0) reaches a critical damage
value Dcr. At the discontinuity level, a traction-
separation law (10) gives the relationship be-
tween the displacement jump (ud) and the co-
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hesion stress (t):

t = gd
(
ud
)

x = x0 (10)

Finally, the following traction continuity conti-
nuity established the equilibrium across the dis-
continuity:

σ − t = 0 x = x0 (11)

Once this condition is attained, material
points close to the crack still behave accord-
ing to the ENL formulation. Their interaction
with x0 are however reduced by considering
that D(x0) = 1 in (9).

The numerical formulation of the previous
problem is achieved in the context of the Em-
bedded Finite Element Method [12]. The addi-
tional degrees of freedom related to the strong
discontinuity (i.e., displacement jumps) are in-
terpolated using the Heaviside function and the
standard shape functions of the finite element.
Then, these degrees of freedom are statically
condensed at the finite elements level, which
makes it possible to solve the problem in a stag-
gered way. The global degrees of freedom (i.e.,
nodal displacements) are computed by solving
the global equilibrium equation by freezing el-
emental crack openings. These elemental de-
grees of freedom are then updated element-by-
element according to the global displacement
field that has just been calculated.

3.2 Regularization features of the ENL for-
mulation with embedded strong discon-
tinuities

Consider the previous example of a one-
dimensional bar. The material has an initially
ENL behavior. The transition to a high dis-
continuity model occurs when D > Dcr in the
weakened finite element. For this element the
traction-separation law is defined as:

t = gd
(
ud
)

= exp

(
−σcr
Gf

ud
)

(12)

where Gf is the dissipated energy in the co-
hesive law, σcr = (1−Dcr)Eεcr denotes the
stress in the bar at the time of transition and

εcr the corresponding strain in the weakened
element. Geometrical and material parameters
used in computations are the same as in exam-
ples illustrated in the previous section. The ad-
ditional parameter Dcr is chosen equal to 0.8.

Figure 4 gives the results obtained for dif-
ferent mesh sizes and three values of the crack
energy parameter Gf . These results validate
the regularization properties of the ENL method
with the transition to strong discontinuity, from
damage initiation to complete structural degra-
dation.
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Figure 4: Regularization properties of the ENL
damage-to-fracture transition method: force-
displacement responses computed for three dif-
ferent mesh sizes

Figure 5 shows the evolution of the strain in
the bulk material (εb = ε − ud/Le, where Le

refers to the length of the finite element) and
the apparent deformation due to the crack open-
ing (ud/Le) in the weakened element of a mesh
comprising 41 finite elements. The strain evo-
lution in a finite element directly next to the lo-
calized one is also considered. For the same el-
ements, damage evolutions are provided in Fig-
ure 6. As expected, after the introduction of
the discontinuity, εb decreases whereas ud/Le

progressively increases and tends to ε. During
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this phase, the damage field along the bar does
not evolve. Notice, however, that the damage
field is not artificially frozen after the crack is
activated. In other words, such response results
from the progressive unloading of the bulk only.
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Figure 5: Strain evolution in the weakened ele-
ment (mesh comprising 41 elements).
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Figure 6: Damage evolution for the ENL for-
mulation with embedded strong discontinuities
(mesh comprising 41 elements).

4 CONCLUSIONS
A first attempt in modeling the transition

from an ENL damage model to a strong discon-
tinuity formulation was presented. First results
in 1D show that the introduction of discontinu-
ity in highly damaged areas makes it possible to
restore the objectivity of the results when the lo-
calization area is reduced to the size of a single
finite element. In view of this work, the defi-
nition of an objective quantification of the en-
ergy dissipated during the cracking process un-
til failure is under development. Furthermore,
objective damage-to-fracture transition criteria
are under investigation.
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