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Abstract. The embedding of anchoring systems in the retrofitting of Reinforced Concrete (RC)
structures by means of Fiber Reinforced Polymers (FRP) often implies local failure modes associated
with high stress concentrations. In order to account for such mechanical behaviours in standard fi-
nite element computations, an explicit representation of interfaces is usually required. This strategy
presents, however, several limitations in terms of computational cost and mesh-related issues. Spe-
cific finite elements for the simulation of pull-out mechanisms are here presented. The presence of
interfaces is taken into account by enriching the displacement approximation by means of additional
unknowns defined at the element level. Static-condensation, therefore, allows preserving the structure
of the finite element procedure and limiting the computational effort.

1 INTRODUCTION

The good performances of FRP materials in
enhancing the bearing capacity of RC structures
have been well-acknowledged by extensive ex-
perimental campaigns during the last decades
[1–5]. One of the main issues related to this
technology is, however, the stress transfer be-
tween concrete and reinforcements, in particu-
lar under flexural loading conditions. Suitable
anchoring systems are therefore required [6–9].
These often consist in composite strands which
are glued through drilled holes to concrete.
The latter are highly recommended especially
in case of joints between vertical and horizon-
tal elements, where non-anchored FRP strips
fail in ensuring the load transfer, as pointed out
in [10, 11]. The introduction of anchors mobi-
lizes the tensile resistance of the reinforcement
with shear stresses developing at the interface
between FRP and concrete. The overall fail-
ure is then connected in most cases with the

anchor pull-out or its rupture, where debond-
ing is often due to cracking of nearby concrete
[9–11]. The choice of an appropriate numerical
model for simulating the bending behaviour of
RC structures strenghtened with FRP must then
take into account the aforementioned observa-
tions. In mesoscale simulations, the discretiza-
tion of the material boundaries allows achiv-
ing an explicit interface representation [12]. A
more macroscopic approach adressed to large
scale simulations consists in introducing kine-
matic relations between non-coincident DOFs,
where bond-slip behaviours between concrete
and reinforcements can be included by means
of interface finite elements [13, 14]. A dif-
ferent strategy is to enrich the finite element
approximation without resorting to remeshing
techniques, by considering a similar framework
as the Extended Finite Element Method (X-
FEM) [15–17] and the Embedded Finite Ele-
ment Method (E-FEM) [18–20]. In this paper, a
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Figure 1: 2D body with an embedded anchor.

finite element model with enhanced kinematics
for the simulation of structures with embedded
anchors is presented. An enrichment is added
to the macroscopic model in order to catch the
interfacial behaviour associated with local shear
stresses. The proposed formulation is validated
at the element level for different configurations
and compared to standard finite element simu-
lations.

2 NUMERICAL MODEL
2.1 Spatial discretization

Let us consider a 2D body Ω and its bound-
ary ∂Ω, crossed by a reinforcement r whose
axis is denoted by Γr (see Figure 1a). Dirich-
let and Neumann boundary conditions are im-
posed on portions ∂uΩ ⊂ ∂Ω and ∂tΩ ⊂ ∂Ω,
respectively, such that ∂Ω = ∂uΩ ∪ ∂tΩ and
∂uΩ ∩ ∂tΩ = ∅. We also assume that there ex-
ists a part of the boundary ∂rΩ ⊂ ∂tΩ where
the resultant Fr acts. We indicate then with Ωh

the spatial discretization of Ω into Ne finite el-
ements and Ωr

h =
⋃Nr

e
e=1 Ωe the set of elements

crossed by Γr.

2.2 Finite element approximation
Each elementary domain Ωe ∈ Ωr

h, charac-
terized by N nodes, is then decomposed into
two subdomains Ω+

e and Ω−e as shown in Figure
1b. Its kinematics is approximated as follows:

u ≈ uh = Nd + Nrdr (1)

where d are the nodal displacements, dr the en-
riching variables defined at the center of gravity
of segment Γe, N is the standard shape function
matrix and Nr is defined as:

Nr =

[
Nr 0
0 Nr

]
(2)

Function Nr is chosen such that the kinematic
boundary conditions can still be expressed in
terms of the sole nodal displacements, i.e. by
imposing:

Nr (xj) = 0 , ∀xj ∈ Ωr
h (3)

where xj denotes the coordinates of node j. In
addition, the compatible strain field reads:

ε ≈ εh = Bd + Grdr (4)

where B = LN and Gr = LNr are the con-
tributions to the strain field associated with the
nodal and enhanced displacements (L computes
∇s), respectively.

2.3 Governing equations
Let us consider the case of a single finite el-

ement. In absence of body forces, by applying
the Principle of Virtual Works (PVW) and fol-
lowing a similar reasoning as for the SKON for-
mulation proposed in the framework of the Em-
bedded Finite Element Method (E-FEM) [19],
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Figure 2: Function Nr in case of CST triangles for different anchor inclinations: (a) αr = −20◦, (b)
αr = 0◦, (c) αr = 20◦.

the governing equations reads:
∫

Ωe

BTσ (ε) dA = Fe
ext (5a)∫

Ωe

G∗rσ (ε) dA = Fe
r (5b)

with
Fe

ext =

∫
∂tΩe

NTh dΓ (6)

where σ (ε) = σ (Bd + Grdr) denotes the
stress field and G∗r is a matrix satisfying the
condition of zero mean, defined as:

G∗r =
1

k+k−lΓe

(
|Ω+

e |χ− − |Ω−e |χ+

)
pT (7)

χ+ and χ−, denoting the characteristic func-
tions of Ω+

e and Ω−e , respectively; lΓe , the length
of segment Γe; p, the matrix containing the
components of the normal n; k+ and k−, de-
fined as:

k+ =
|Ω+

e |
lΓe

, k− =
|Ω−e |
lΓe

(8)

Eq. (5a) states the global equilibrium between
internal and external forces, whereas Eq. (5b)
translates a local equilibrium condition along
Γe.

2.4 Kinematic enrichment
After introducing the Heaviside function

centered on Γe defined as:

HΓe(x) =

{
1, x ∈ Ω+

e

0, x ∈ Ω−e
(9)

in the framework of a pull-out analysis, a possi-
ble choice for function Nr is:

Nr(x) = χ+

N∑
i=1

ai(1−HΓe(xi))Ni(x)

+ χ−

N∑
i=1

aiHΓe(xi)Ni(x)

(10)

where Ni is the shape function associated with
node i and constants ai ensure a C0- continuity
across Γe (see Figure 2). Nr can be written in a
compact form as:

Nr = χ+N(I−H)A + χ−NHA (11)

where I and H are (2Nx2N) matrices and A is
of dimension (2Nx2). Matrix Gr assumes then
the following expression:

Gr = χ+B(I−H)A + χ−BHA (12)

2.5 Resolution
In case of a linear elastic behaviour, the

stress is expressed as:

σ = Dε = D (Bd + Grdr) (13)

where D is the stiffness of the material. Substi-
tuing relation (13) into system (5), we obtain:{

Ke
bbd + Ke

bgdr = Fe
ext (14a)

Kgbd + Ke
ggdr = Fe

r (14b)
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Figure 3: 2D case study: (1) macroscopic model, (2) mesoscopic model.

where we have defined the matrices:

Ke
bb =

∫
Ωe

BTDB dA

Ke
bg =

∫
Ωe

BTDGr dA

Ke
gb =

∫
Ωe

G∗rDB dA

Ke
gg =

∫
Ωe

G∗rDGr dA

(15)

If we collect dr from equation (14b), we have:

dr =
(
Ke

gg

)−1 (
Fe

r −Ke
gbd
)

(16)

The nodal displacements can therefore be com-
puted by replacing expression (16) into equa-
tion (14a) as:

d = K̃−1
e

(
Fe

ext −Ke
bg

(
Ke

gg

)−1
Fe

r

)
(17)

where

K̃e = Ke
bb −Ke

bg

(
Ke

gg

)−1
Ke

gb (18)

is the condensed stiffness matrix.

3 NUMERICAL VALIDATION
3.1 Problem description

Let us consider the case study depicted in
Figure 3, where CST elements have been used.
The effect of an embedded anchor is here rep-
resented by the force Fr = Fr cosαrix +

Fr sinαriy, with Fr = 105 N, applied in the
middle of the right side of the structure. Lin-
ear springs with stiffness ks = 2.36 × 109 N

m

are introduced. The material parameters are
E = 30 GPa and ν = 0.2. Plane stress condi-
tions are assumed for the computations (thick-
ness t = 0.1 m). The effect of the inclination
αr on the numerical response is studied while
keeping the load application point fixed. The
enhanced model presented in Section 2 is com-
pared to standard finite elements. We will refer
to “macroscopic” model in case of a single finite
element and to “mesoscopic” model in case of
an explicit interface, assumed as reference. The
latter counts three finite elements and is decom-
posed into Ω+ = Ω1 ∪ Ω2 and Ω− ≡ Ω3.

3.2 Results

The displacement uF at the load application
point, the local shear stress τ , computed as:

τ = (σy − σx) sinαr cosαr

+ τxy
(
cos2 αr − sin2 αr

) (19)

the principal stresses σI and σII and their direc-
tions αI and αII are compared. The total aver-
age (̄·) of quantity (·) is computed as:

(̄·) =
1

|Ω|

∫
Ω

(·) dA (20)
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Figure 4: Comparative curves: displacement at load application point (a), shear stresses (b), maxi-
mum principal stresses (c), minimum principal stresses (d).

whereas local averages are defined as:

(̄·)+
=

1

|Ω+|

∫
Ω+

(·) dA

(̄·)− =
1

|Ω−|

∫
Ω−

(·) dA

(21)

As can be seen in Figure 4, the enhanced macro-
scopic model performs pretty well with respect
to the reference mesoscopic simulation, espe-
cially in computing local shear stresses (of op-
posite sign), whose total average value tends to
zero as |Ω+| = |Ω−| (when αr → −45◦, see
Figure 4b). Such quantities govern the interfa-
cial behaviour associated with pull-out mech-
anisms, which can not be reproduced by the
standard macroscopic model. The evaluation
of normal stresses is slightly less precise, but
still satisfying (Figures 4c and 4d). As one can

see in Figure 5, the onset of a localized defor-
mation mode does not affect significantly the
overall average principal stress directions, i.e.
ᾱi ≈ ᾱi,ref ≈ αi,std, ∀αr, with i = I, II .
In Figure, 6 the resulting deformed shapes for
αr = −20◦ are shown, where the effect of the
kinematic enhancement can be appreciated.

4 CONCLUSIONS

A finite element with enhanced kinematics
for the simulation of structures with embed-
ded anchors of arbitrary orientation has been
proposed. An enrichment is added to the
kinematic approximation for reproducing local
mechanisms arising along the interface at the
additional cost of solving a local equilibrium
equation. The proposed model performs well
with respect to a full model where the interface
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Figure 5: Comparative curves: maximum principal stress directions (a), minimum principal stress
directions (b).

is explicity represented, especially in evaluat-
ing the shear stresses which are considered to
be responsible for the experimentally observed
debonding failure modes. Complete structural
simulations, including nonlinear material re-
sponses, have to be performed in order to fully
validate the proposed numerical model.
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[19] M Jirásek. 2000. Comparative study on
finite elements with embedded discon-
tinuities. Computer Methods in Applied
Mechanics and Engineering, 188(1):307–
330.

7



F. Riccardi, C. Giry and F. Gatuingt

[20] J Oliver, A E Huespe and P J Sánchez.
2000. A comparative study on finite el-
ements for capturing strong discontinu-

ities: E-FEM vs X-FEM. Computer Meth-
ods in Applied Mechanics and Engineer-
ing, 195(37–40):4732–4752.

8


	INTRODUCTION
	NUMERICAL MODEL
	Spatial discretization
	Finite element approximation
	Governing equations
	Kinematic enrichment
	Resolution

	NUMERICAL VALIDATION
	Problem description
	Results

	CONCLUSIONS



