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Abstract. In this work, we fuse the scaled boundary finite element method (SBFEM) on balanced hy-
brid quadtree-polygon (QT) meshes with the extended multiscale finite element method (EMsFEM)
to accelerate crack propagation simulations. This scaled boundary multiscale approach to crack prop-
agation employs SBFEM in a fully resolved region immediately surrounding the crack tip and coarse
elements, i.e., EMsFEM unit cells, in the remaining domain. As the crack propagates across the do-
main, unit cells within the immediate crack path are resolved. Once the crack completely transitions a
resolved unit cell it is replaced by two newly constructed, coarse unit cells. This approach limits com-
putational effort to the crack tip region, primarily replacing the fine mesh on the domain by a coarse
one, on which the governing equations are solved. Early results indicate that this method results in
a reduction of required degrees of freedom (DOFs) by at least an order of magnitude for simple do-
mains. Further techniques, unique to the SBFEM, are exploited to enrich the crack tip element and
further reduce the amount of refinement necessary about the crack tip. The latter traditionally neg-
atively affects the QT mesh due to the balancing operation. Via fusion of these two techniques, the
amount of DOFs during simulations of crack propagation remains tractable.

1 INTRODUCTION

The demand for sustainable design in, e.g.
the aerospace, automotive and construction in-
dustries has lead to the development of lighter,
stronger and more resilient structures, spawning
the need to guard against failure processes by
leveraging robust, economical and high-fidelity
numerical simulations.

The finite element method (FEM) comprises
the numerical method of choice in the indus-
try, due to its advanced level of maturity. How-
ever, many challenges characterizing singulari-

ties and propagating discontinuities remain for
numerical methods that rely on a discrete crack
representation:

1. A conforming mesh topology is required
2. Polynomial-based interpolation functions

cannot reproduce the singular stress field
3. Algorithmic challenges in tracking crack

paths, incorporating branching and merg-
ing behaviour

4. Mesh dependant projection errors may
arise during nonlinear and dynamic anal-
yses

1

grassl
Typewritten Text
https://doi.org/10.21012/FC10.233540

https://doi.org/10.21012/FC10.233540


Adrian W. Egger, Savvas P. Triantafyllou and Eleni N. Chatzi

5. No uniform and theoretically sound treat-
ment of nucleation, branching and merg-
ing of cracks currently available

6. Special post-processing methods to ex-
tract the stress intensity factors (SIFs)

The extended finite element method (XFEM),
proposed by Moës [10] and widely adopted in
industry and academia alike, mitigates many of
the above issues related to mesh dependency
and treatment of singularities by locally en-
riching the finite element approximation space
with known features of the solution. A less
known alternative, namely the scaled boundary
finite element method (SBFEM) [25], does not
require a priori knowledge of the singularity,
since its analytic solution in radial direction nat-
urally incorporates the singular stress field and
permits elegant and efficient extraction of the
generalized stress intensity factors (gSIFs) dur-
ing post-processing without the need for special
post-processing tools.

SBFEM distinguishes itself from other nu-
merical methods by the introduction of a scal-
ing center in each element and a resulting semi-
analytic formulation. This key concept was first
adopted in other engineering fields, e.g., the so-
lution of electric field problems [21]. Within
the context of solid mechanics, Dasgupta et
al. [4] first applied this approach and named
it the “cloning algorithm”. A similar formu-
lation was subsequently adopted by Wolf and
Song [33], who standardized a derivation by
minimal weighted residual method [32,34] they
then called “SBFEM”. Although originally de-
veloped to tackle problems of unbounded do-
mains, highly encouraging results were ob-
tained for bounded domains [32], particularly
within the context of LEFM [3, 24]. SBFEM’s
analytic solution in radial direction, which en-
ables the robust transition between power and
power-logarithmic singularities [24] permitted
the investigation of various multi-material sce-
narios without a priori knowledge of the order
of singularity. Hence, multi-material plates un-
der both static and dynamic loading [23] as well
as the crack propagation direction at bi-material

notches [11] have been studied. SBFEM was
first extended to modelling crack propagation
problems by Yang et al. [35]. The initial meshes
were created manually, employing few large
sized subdomains. Subsequent extensions per-
mitted the treatment of crack propagation in
reinforced concrete [17], under dynamic exci-
tation [18, 19] and a nonlinear cohesive frac-
ture model in concrete [13, 36, 37]. How-
ever, the limitation of this laborious meshing
approach sparked research into the adoption
of newly developed polygon mesh generators
[16, 28], which enabled fully automatic mod-
elling of crack propagation employing SBFEM
as the underlying discretization method. How-
ever, since the construction of the SBFEM stiff-
ness matrix requires the solution of an eigen-
problem, use of polygonal elements incurred
significant computational cost. This was alle-
viated with the advent of quadtree based mesh-
ers in conjunction with polygon clipping, in or-
der to accurately represent domains not aligned
with a Cartesian grid [12], even at coarse dis-
cretization levels. The balancing approach in-
troduces 16 possible element realization, which
are pre-computed and retrieved as necessary,
such that the main source of computational ef-
fort stems from the construction of the stiffness
matrices for clipped polygons on the bound-
ary. While SBFEM significantly accelerates
LEFM-related computations [7], the simulation
of more involved problems bridging multiple
scales still poses a considerable challenge. One
possible way to mitigate such issues is by uti-
lizing multiscale methods.

To this end, several numerical homogeniza-
tion methods have been proposed [6]. Here
we utilize the extended multiscale finite ele-
ment method (EMsFEM) [40], which applies
the FEM to compute the homogenized mate-
rial parameters and map the microscopic re-
sponse to the macroscopic system response.
The central idea is to numerically construct this
mapping by locally solving a series of Dirich-
let boundary value problems. Its predecessor,
MsFEM, was first applied to two-phase flow
and transport problems in highly heterogenous
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porous media [8]. An augmentation thereof,
the coupling MsFEM, treated the consolidation
of heterogeneous saturated porous media [38].
The further inclusion of Poisson’s effect in con-
struction of the mapping led to its applicability
in computational solid mechanics [39, 40] and
labelling as EMsFEM. Triantafyllou and Chatzi
subsequently proposed the hysteretic multiscale
finite element method (HMsFEM) [29], which
treats nonlinear static and dynamic analysis of
heterogeneous structures within the hysteretic
finite element framework [31]. The multi-axial
smooth hysteretic model controlling the evo-
lution of plastic strains follows the Bouc-Wen
model of hysteresis [1]. This approach was later
applied to model validation in reliability analy-
sis and inverse problem formulations [30].

The aim of this work is to fuse existing
SBFEM based approaches, augmented by a
newly proposed method to locally enhance the
accuracy of gSIFs, with established EMsFEM
principles, enabling efficient crack propagation
simulations for large systems. By minimiz-
ing and stabilizing the amount of DOF required
during analysis, computational effort and thus
computation times are kept stable, enabling the
analysis of previously intractable systems.

The remaining sections of this paper are
structured as follows: Sec. 2 presents the per-
tinent theory. In sec. 3 the proposed method
is detailed. Numerical examples are solved in
sec. 4 and conclusions are drawn in sec. 5.

2 THEORY

2.1 Problem Statement

In formulating the LEFM problem, we con-
sider a two dimensional cracked domain Ω. The
boundary Γ consists of Γ0 with free surface
boundary conditions, Γu with prescribed dis-
placements ū and Γt with surface tractions t̄
applied as Neumann conditions. Free surface
conditions apply to the crack surface Γc. As de-
picted in Fig. 1, the whole boundary of the body
comprises Γ = Γ0 ∪ Γu ∪ Γt ∪ Γc . The strong
form with boundary conditions is stated as:

Figure 1: Cracked Body and boundary condi-
tions.

∇ · σ + b = 0 in Ω (1a)
u = ū on Γu (1b)

σ · n = t̄ on Γt (1c)
σ · n = 0 on Γ0

c (1d)
σ · n = t̄c on Γtc (1e)

where the Cauchy stress tensor, unit outward
normal to the boundary, applied body force per
unit volume, displacement field and gradient
operator are denoted as σ, n, b, u and∇ respec-
tively.

Within the context of LEFM the material is
defined by the modulus of elasticityE and Pois-
son ratio ν, thus the strain field ε and the stress
field σ follow as:

ε = ∇su and σ = Dε (2)

where ∇s refers to the symmetric gradient op-
erator and in 2D [D] is the elasticity tensor.

2.2 Summary of SBFEM Theory
The distinguishing feature of SBFEM [25] is

the introduction of a scaling center. One scal-
ing center, from which the entire boundary must
be visible, is present in each polygonal SBFEM
element, termed a subdomain. Consequently,
the transition in reference system from Carte-
sian to one resembling polar coordinates intro-
duces the radial coordinate ξ and local tangen-
tial coordinate η (Fig. 2). The radial coordi-
nate takes on the values ξ = 0 at the scal-
ing center and ξ = 1 on the boundary. Keep-
ing this component analytic during the entire
analysis permits the reduction in dimensional-
ity of the problem by one. For the case of
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2D bounded domains, it follows that only dis-
cretization of the subdomain’s boundary, in the
finite element sense, into independent line el-
ements is required. Standard line elements are
employed, each with a separate local coordinate
η spanning −1 < η < 1.

x
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Figure 2: Subdomain with scaled boundary co-
ordinates ξ and η.

The mapping between Cartesian (x, y) and
scaled boundary coordinates (x(ξ, η), y(ξ, η))
results from scaling any point (xb, yb) that sits
on the boundary along the radial component
ξ, while employing conventional finite element
shape functions [N(η)] in tangential direction.
This mapping is expressed as follows:

x(ξ, η) = ξxb(η) = ξ[N(η)]{xb} (3)
y(ξ, η) = ξyb(η) = ξ[N(η)]{yb} (4)

Similarly the displacements contain an analytic,
{u(ξ)}, and interpolatory, [N(η)], component:

{u(ξ, η)} = [N1(η)[I], ..., Nn(η)[I]]{u(ξ)} (5)

The amount of degrees of freedom (DOF)
present in a line element is denoted by the sub-
script n. Here, [I] is the 2 × 2 identity ma-
trix, while {u(ξ)} is an analytic function of
the nodal displacements along the line given by
0 < ξ < 1. It can be shown that the stresses
follow as [27]:

{σ(ξ, η)} = [D]([B1(η)]{u(ξ)},ξ +[B2(η)]{u(ξ)}/ξ)
(6)

The strain-displacement relation is described
by the combination of [B1(η)] and [B2(η)] [25].
The governing differential equation is recast

into scaled boundary coordinates, which, upon
application of standard techniques along η,
gives rise to two equations [5, 9, 32]:

[E0]ξ2{u(ξ)},ξξ + [[E0] + [E1]T − [E1]]ξ{u(ξ)},ξ
− [E2]{u(ξ)} = {0} (7)

{P} = [E0]{uh},ξ + [E1]T {uh} (8)

Behaviour within the domain is described by
Eqn. 7. Behaviour on the boundary is governed
by Eqn. 8. {P} is the nodal force vector and
{u} = {u(ξ = 1)}. The coefficient matrices
[E0], [E1], [E2] are treated analogousness to a
stiffness matrix in the FEM: Calculated for each
element individually and then assembled. This
homogeneous set of Euler-Cauchy differential
equations in ξ, has a general solution in the form
of a power series:

{u(ξ)} = [Ψ(u)]ξ−[S]{c} =

n∑
i=1

[Ψ
(u)
i ]ξ−[Si]{ci} (9)

The established solution procedure entails
recasting the Eqns. 7 and 8 as a system of
first order differential equations, from which the
transformation matrix [Ψ] and block diagonal
real Schur form [S] are ultimately derived:

ξ

{
{u(ξ)}
{q(ξ)}

}
,ξ = −[Z]

{
{u(ξ)}
{q(ξ)}

}
(10)

where Z is a Hamiltonian coefficient matrix

Z =

[
[E0]−1[E1]T −[E0]−1

−[E2] + [E1][E0]−1[E1]T −[E1][E0]−1

]
(11)

and the block-diagonal Schur decomposi-
tion [22] decouples Eqn. 10.

[Z][Ψ] = [Ψ][S] (12)

The eigenvalues are now contained in the di-
agonal blocks of the real Schur form, while the
columns of the transformation matrix contain
the modes. The sign of the eigenvalues deter-
mines if a mode contributes to the bounded or
unbounded response of the subdomain. Sep-
arating these two responses comprises sorting
of [S] and [Ψ] with subsequent partitioning ac-
cording to sign.

[S] = diag([Sneg], [Spos]) (13)

[Ψ] =

[
[Ψ

(u)
neg Ψ

(u)
pos]

[Ψ
(q)
neg Ψ

(q)
pos]

]
(14)
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The stiffness matrix of the subdomain can
then be derived by expressing the nodal forces
on the boundary with enforced integration con-
stants (Eqn. 9 in Eqn. 8). The displacement so-
lution is then calculated analogous to FEM:

Kbounded = [Ψ(q)
pos][Ψ

(u)
neg]

−1 (15)

Upon substitution of Eqn. 9 into Eqn. 6 the
stresses are obtrained:

{σ(ξ, η)} =

n∑
i=1

[Ψσi(η)]ξ−[Si]−[I]{ci}] (16)

where [Ψσi(η)], the stress mode, is linked to
its corresponding displacement mode [Ψ

(u)
i ] by:

[Ψσi(η)] = [D](−[B1(η)][Ψ
(u)
i ][Si] + [B2(η)][Ψ

(u)
i ])

(17)

2.3 Generalized Stress Intensity Factors
Extraction of the gSIFs follows from inspec-

tion of the general solution to the SBFEM equa-
tion (Eqn. 9). The singular modes are readily
identified by all −1 < real(λ) < 0, which
can be shown to invoke a singular response at
ξ = 0. If the scaling center coincides with
the crack tip, this feature is leveraged to cal-
culate the gSIFs (Fig. 2) by taking the limit of
the singular stresses as ξ→0. The inclusion of
a double node at the crack mouth gives rise to
two additional modes, the singular modes, cor-
responding to the mode I and II fracture cases
respectively. Singular quantities, i.e., the singu-
lar stress field, are retained from the general so-
lution (Eqn. 16) and denoted by the superscript
(s):
{σ(s)(ξ, η)} = [Ψ(s)

σ (η)]ξ−([S
(s)]−[I]){c(s)} (18)

A transformation into polar coordinates
is performed and the rotated components
{σ(s)(r, θ)} = (σ

(s)
θ (r, θ), τ

(s)
rθ (r, θ))T corre-

sponding to mode I and mode II cracks are re-
tained:

{
σ
(s)
θ (r, θ)

τ
(s)
rθ (r, θ)

}
=

1√
2πL

ξ−[S̃
(s)(θ)]

{
KI(θ)
KII(θ)

}
(19)

By comparison of Eqn. 19 to the gSIFs for-
mal definition [26], they are evaluated as:{

KI(θ)
KII(θ)

}
=
√

2πL{σ(s)} (20)

2.4 Hierarchial Meshes
The use of quadtree decompositions to build

simulation ready meshes for SBFEM analysis
has enjoyed great interest in very recent litera-
ture [2, 14, 15]. Taking advantage of SBFEM’s
polygon underpinnings, all issues commonly
associated with hanging nodes are alleviated.
Further, balancing the mesh (Fig. 3b) results
in only 16 precomputable subdomain orienta-
tions. Polygon clipping [12] is employed in or-
der to incorporate strong discontinuities. Dou-
ble nodes are introduced in the process and tra-
versed subdomains are split into two accord-
ingly. Crack tip elements comprise an addi-
tional node at the crack mouth, with the crack
tip coinciding with the scaling center (Fig. 2).
Crack propagation within the LEFM context re-
quires the accurate calculation of the gSIFs in
order to determine the crack propagation an-
gle. To this end, sufficient angular resolution
of the singular stress field is required. Since
the precomputed elements generally do not suf-
fice, a region around the crack tip is homoge-
nized (Fig. 3c) by a macro crack tip element.
The location of the subsequent crack tip is ob-
tained by projecting (Fig. 3d) the existing crack
tip by a user specified increment ∆a in direc-
tion of the determined crack propagation angle.
Unfortunately, refinement and subsequent ho-
mogenization of the crack tip element does in-
troduce a significant amount of additional DOF,
since the balancing operation propagates across
the mesh. A method to mitigate this issue is in-
vestigated at the end of the following section.

2.5 EMsFEM
Implementing EMsFEM comprises four

steps. Quantities calculated during the first two
remain constant during analysis, while the latter
two are performed at each iteration.

1. Numerically construct the basis functions
2. Evaluate the equivalent coarse element

stiffness matrix
3. Solve the governing equations on the

macro-scale
4. Downscaling of the macro-scale solution
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Refinement
Balancing

Homogenization

(a) (b) (c) (d)

Figure 3: Introduction of SBFEM specific discretization of the domain.

The basis functions (NBF) providing the
mapping between scales are constructed numer-
ically by solving a Dirichlet boundary value
problem on a unit cell. In this work, we im-
plement linear boundary conditions. These are
constructed sequentially and independently of
each other. Example boundary displacements
are illustrated in Fig. 4: A unit displacement
is imposed at node 1 in x-direction. Displace-
ments in x-direction vary linearly, analogous to
bilinear shape functions, along the boundaries
12 and 14. The whole domain is constrained in
y-direction. Additionally, boundaries 23 and 34
are further constrained in x-direction.

u=1

1

4

2

3

Figure 4: Construction the NBF by solving the
associated Dirichlet boundary condition.

The resulting displacement solution com-
prises a column entry of the basis function map-
ping the effect of a unit displacement of the
coarse scale to the response on the fine scale.
Completing the procedure for all coarse DOF

results in:

{u} = [N ]{u′E} (21)

where {u} contains the displacements of the
fine scale mesh, {u′E} is the displacement vec-
tor of the coarse mesh and [N] the basis func-
tion matrix. Here, [N] is a nDOF x 8 matrix
for a unit cell of 4 coarse nodes and 2 DOF per
node, with column obtained by solving the as-
sociated Dirichlet boundary value problem. The
method does not impose a limit on the amount
of coarse nodes permitted per unit cell. Hence
coarse element representing unit cells are abbre-
viated as CMX, where “CM” refers to coarse
multiscale elements and “X” is the amount of
coarse nodes.

The equivalent stiffness matrix of a coarse
element is obtained by energy equivalence. To
this end, the strain energy of the fine scale is
mapped to the coarse scale by means of Eqn. 21.

Πe =
1

2
uTeKeue =

1

2
u′TE N

TKeNu
′
E (22)

with the equivalent stiffness matrix of the unit
cell given as KE = NTKeN .

The macro-scale computations are then per-
formed in the standard FEM sense. Upon so-
lution of the governing equations on the coarse
mesh, downscaling operations are necessary to
evaluate the fine scale response. Through re-
versing Eqn. 21 the displacements are provided
for each element on the fine scale and the stan-
dard procedures for strain and stress evaluation
are available.
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3 PROPOSED METHOD
The proposed method is split into two dis-

tinct phases: online and offline calculations.
The offline phase comprises the identification
and precomputation of the coarse elements. The
computational burden associated with the re-
peated solution of the Dirichlet boundary value
problem is minimized by first condensing the
internal DOF and then constructing [N ], or
by decomposing the stiffness matrix by direct
methods. The online phase comprises the crack
propagation scheme. To this end, the unit cells
in vicinity of the crack tip are fully resolved,
meshed and their elements assembled in the fi-
nite element sense. In parallel, the coarse el-
ements comprising the remaining domain are
also assembled and the coarse and fine meshes
are tied together by penalty method (Fig. 5, blue
lines), to not introduce further DOF in the pro-
cess. The linear boundary conditions employed
during construction of the unit cells imply lin-
ear displacements between coarse nodes (Fig. 5,
red dots), defining the tie constraint behaviour.
The system is then solved for and the crack is
propagated according to a prescribed crack in-
crement ∆a and computed crack propagation
angle [20]:

θc = 2 tan−1

[
−2KI/KII

1 +
√

1 + 8(KI/KII)2

]
(23)

The accurate calculation of the gSIFs is
paramount. However, sufficient angular resolu-
tion of the singular stress field is required. Typ-
ically, this is achieved by homogenizing a re-
gion around the crack tip (Fig. 3c) at the ex-
pense of introducing a significant number of
DOF due to the balancing requirement. This
work investigates an alternate approach, which
does not introduce additional DOF in the pro-
cess. By inspection of Eqn. 18, the stress so-
lution can be improved in two ways: Reduce
the error of the integration constants {c}, by
refining the mesh or improve the approxima-
tion space of the element by adding more eigen-
pairs [Ψ] and [S] respectively. For the latter, hp-
refinement on the cracked element is performed
in post-processing and boundary displacements

compatible with the surrounding mesh are im-
posed. Thus, the error stemming from the ele-
ment’s approximation space is minimized. This
procedure is investigated in the first example of
sec. 4. Hence, similar accuracy for the gSIFs
is obtained at significantly fewer DOF, allevi-
ating the computational burden stemming from
the fully resolved subdomain.

4 NUMERICAL EXAMPLES
4.1 Edge cracked square plate in mode I

An edge cracked square plate subject to a
plane stress state is examined (Fig. 6). The
bottom edge of the domain is fully restrained,
while a forced displacements of uy = 1 and
ux = 0 are applied to the top edge, eliciting
mode I behaviour. The material properties are
E = 200 [N/mm2], v = 0.3, Gc = 2.7 [N/mm2]
and the side length is L = 1 [mm].

uy = 1

E = 200 [N/mm2]
ν = 0.3

L

L

a = L/2

uy
ux

ux = 0

Figure 6: Experimental setup for numerical ex-
ample 1.

For crack propagation a crack increment of
∆a = 0.025 [mm] is imposed for each step.
To this end, load-deflection curves for several
methods are compared: (i) XFEM, (ii) tradi-
tional QT SBFEM, (iii) SBFEM with crack tip
elements corresponding to QT mesh types A-
C (Fig. 7), (iv) the newly proposed SBFEM
method and (v) a high fidelity SBFEM solution
comprising one subdomain with hp-refinement.

In this first numerical example, only the ben-
efits of enhancing the solution space of the
crack tip element are assessed. Since the crack
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Figure 5: Scaled boundary multiscale approach to crack propagation (MSBFEM).

path for all methods overlap, i.e., they propa-
gate in direct extension of the imposed crack,
no corresponding figure is provided. The load
deflection curves (Fig. 8) overlap similarly, val-
idating the novel approach: The same amount
of initial DOF are employed, i.e., 880, as for
method (iii), however, the accuracy of the tradi-
tional approach (ii) utilizing 1024 initial DOF is
achieved. Method (iii) is an example of insuf-
ficient angular resolution of the singular stress,
which results in an oscillatory crack path due to
inaccurately calculated gSIFs.

QT mesh node
linear BC

CBA

Figure 7: Typical element types A-C arising
from QT meshes.

As the crack reaches the right domain
edge, the traditional approach accumulates
6150 DOF, since it updates the mesh from the
previous iteration, while the proposed method
counts 942 DOF, since it updates the mesh from
the original configuration. The reduction in

DOF is achieved by alleviating the need for
refinement around the crack tip at each step,
which by virtue of the balancing operation per-
formed on the QT mesh can effect the entire
domain. Further, the obtained results coincide
with those obtained from a fine XFEM anal-
ysis (i) employing a domain discretization of
161x161 element and a high fidelity SBFEM
solution (v) employing 568 DOF.

0 1 2 3 4 5 6

10
-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 8: Load deflection curves for methods (i)
- (v).

The exact solution for this type of domain
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mandates a square root singularity, which states
that all eigenvalues contained in [S(s)] (Eqn.18)
equal 0.5. This property is purely a reflection
of the quality of the element’s approximation
space. Tab. 1 tallies the results for the SBFEM
based methods.

Table 1: Convergence of eigenvalues to square
root singularity.

Method nDOF λ1 λ2

exact - 0.5 0.5

(ii) trad. 2 34 0.5021064963 0.5021064963
4 66 0.5005475556 0.5005475556
6 162 0.5000886191 0.5000886191

12 322 0.5000221913 0.5000221913

(iii) QT A 12 0.5433312606 0.4870735087
B 18 0.5063008435 0.5063008435
C 34 0.5014328795 0.5014328795

(iv) asym. 3n 66 0.4999931111 0.4999919721
3n 98 0.4999985473 0.4999985473
3n 130 0.4999995247 0.4999995247
5n 42 0.5009582361 0.5005557772
5n 68 0.5000018223 0.5000017606
5n 106 0.5000003899 0.5000002149

(v) hi-fi 578 0.4999999999 0.5000000000

Table 2: Convergence of gSIFs to high-fidelity
solution.

Method KI error [-] error [%]

(iii) QT A 18.8248269915 3.4427 22.38
B 17.1446993257 1.7626 11.46
C 15.7671965544 0.3851 2.50

(iv) asym. A 15.7149404150 0.3328 2.16
B 15.6299451660 0.2478 1.61
C 15.4576076163 0.0755 0.49

(v) hi-fi 15.3821134836 - -

Therein, the SBFEM based method variants
(ii-iv) are considered. For the case of the es-
tablished QT crack propagation method (ii),
the study was performed based on the amount
of refinement around the cracked element for
{2,4,6,12} linear elements per long side of the
cracked domain. The asymptotic behaviour (iv)
of the newly proposed method was studied by

3- and 5-noded elements, denoted by 3n and 5n
respectively. Accordingly, the newly proposed
asymptotic approach evaluates the mode I SIF
employing the same amount of nodes as the QT
meshes (Fig. 7), yet with substantially improved
accuracy (Tab. 2).

4.2 Notched perforated plate
A perforated plate as depicted in Fig. 9 is

considered. A notch of length A = 1 [mm]
is introduced at a distance L = 18 [mm] from
the bottom right corner. Displacements are
prescribed on both sides such that [ux, uy] =
[±0.1, 0]. The material properties are E = 200
[N/mm2], v = 0.3, KIc = 1500 [N/mm3/2].
The height and width of the perforated plate are
H = 24 [mm] and W = 60 [mm] respectively.
Plane stress conditions are assumed.

A

L

U

B

W

H

U

H = 24 W = 60 L = 18

A = 1 B = 2

[mm]

Figure 9: Experimental setup for numerical ex-
ample 2.

Fig. 10 depicts various snapshots of the var-
ious crack propagation phases. During phase
1, the initial discretization is employed, i.e.,
a fine mesh (green) immediately surrounding
the crack front (orange), encased by CM8 and
CM16 homogenized elements (red) and tied to-
gether by penalty method along the interface
(blue). While the conventional SBFEM requires
approx. 52’000 DOF, the scaled boundary
multiscale approach (MSBFEM) employs 2268
DOF, reducing the amount of DOF by a fac-
tor of 22, without perceivable altering the crack
path (Fig. 11). Once the crack tip falls within
a user specified distance to the adjacent CMX
elements, here chosen as one fifth of a CM8 el-
ement side length, these are fully resolved as
well, resulting in phase 2 (Fig. 10). Analysis by
conventional SBFEM results in approx. 58’000

9
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DOF, while MSBFEM employs 4318 DOF, a
reduction by a factor of 13. However, the crack
paths calculated by the two methods starts to
deviate slightly. This is the effect of the lin-
earized boundary conditions, which result from
the method with which the multiscale NBF are
computed, prescribed on the fully resolved re-
gion (green). The imposed linear boundary con-
ditions artificially over-constrain the unit cell,
resulting a in stiffer response on the coarse
scale, thus impacting the accuracy of the cal-
culated stress field on the fine scale.

P
h
a
se

1
P
h
a
se

2
P
h
a
se

3

Figure 10: Crack propagation phases 1-3.

In phase 3 (Fig. 10) the crack has transi-
tioned all fully resolved blocks from phase 2.
Hence, this region can be replaced by corre-
sponding CMX elements (purple) without in-
curring a loss in accuracy. To this end, the crack
path is smoothed into linear segments joined by
the CMX coarse nodes. The computational ef-
fort expended in constructing these CMX (pur-
ple) elements online is expected to be recu-
perated over few subsequent crack propagation
steps. Indeed, while SBFEM requires approx.
65’000 DOF for analysis, the proposed MS-
BFEM scheme makes due with 2436 DOF, a
reduction by a factor of 26. If the online phase

where to be forgone, the MSBFEM approach
would require 6386 DOF and only result in a
reduction by a factor of 10. The crack paths do
continue to diverge slightly with the effects be-
coming more visible. First, small deviations are
compounded across all crack propagation steps.
Second, linearized boundary conditions in the
narrow, fully resolved band (phase 3, green) af-
fect the stress state to a greater degree than in
the previous phases. By inspection of the two
crack paths it seems as if the MSBFEM ap-
proach is more resistant to local stress concen-
trations influencing the gSIFs and thus the crack
path incorporates fewer sharp changes in direc-
tion as seen in points A, B and C in Fig. 11.

MSBFEM

SBFEM

A

B

C

Figure 11: Crack paths for SBFEM and MS-
BFEM inside the affected subdomain.

5 CONCLUSION
MSBFEM is an effective scheme to fo-

cus the computational burden of crack prop-
agation analysis on select regions. This is
achieved by substituting regions characterized
by weak interaction with coarse elements con-
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structed by EMsFEM. To this end, the amount
of DOF present is reduced by more than an or-
der of magnitude as demonstrated by the crack
propagation analysis of a notched, perforated
plate. Further, exploiting SBFEM’s unique fea-
ture set to enhance the quality of calculated
gSIFs in post-processing is shown to further re-
duce the required number of DOFs for stan-
dard crack propagation analysis in the fully re-
solved region. This reduction in the set of ac-
tive DOFs does not hinder accuracy; the result-
ing MSBFEM crack path closely resembles the
SBFEM reference case.
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