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Abstract. In this work, we present results obtained in our recent works regarding the simulation of 3D
microcracks in concrete microstructures whose geometries are obtained by micro tomography images.
The phase field method for quasi brittle fracture is employed to simulate the initiation, propagation
and merging of microcracks networks. Using in-situ testing and micro tomography images of concrete
microstructures, the initial microstructure geometries are used to simulate the full 3D crack network
for direct validation with the experiments. The obtained predictability of the model allows developing
inverse approaches to identify the microstructural damage parameters. Extensions of the phase field
method to interfacial damage is proposed to predict the interaction between bulk micro crack networks
with interfacial debounding, occurring at the sand grains and the cement paste interfaces. Examples
of large scale simulations (involving up to 30 million voxels) of crack propagations are presented.

1 Introduction
Prediction of fracture resistance in civil en-

gineering materials is a central and major is-
sue in engineering. Achieving this objec-
tive through simulation modeling methods faces
several technical and scientific obstacles. One
possible way for constructing more predictable
rupture models is to go down to the microstruc-
ture of the materials. However, such a strat-
egy leads to several difficulties, including: (a)
the development of crack propagation simu-
lation methods in complex geometrical con-
figurations associated with heterogeneous mi-
crostructures; (b) the construction of models
for microstructural phenomena and their iden-

tification, whose coefficients can be hardly be
accessed through common measurement meth-
ods; (c) constructing the macroscopic damage
models from the microstructural models and (d)
developing adapted experimental methods for
exchanging information with the simulations.

In the present work, [8–12], we first propose
to develop the modeling and simulation meth-
ods for the initiation and propagation of com-
plex micro crack networks as found in concrete
materials. Then, we combine these tools with
microtomography images and in situ test to con-
struct the microstructural models. Then, we de-
velop identification and validation procedures
combining the simulations and the experiments.
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The crack propagation modeling and simu-
lation method is based on the variational ap-
proach to fracture as proposed by Bourdin,
Marigo and Francfort [4–6], and developed in
an efficient algorithmic framework by Miehe et
al. [7]. This method allows circumventing sev-
eral well-known issues in fracture simulation
and offer many advantages such as: (a) a simple
numerical framework involving classical finite
elements only; (b) mesh-independence; (c) the
convergence with respect to the mesh size; (d)
the possibility to handle initiation, propagation
and merging of a large number of microcracks
in 3D complex configurations; (e) a great nu-
merical robustness and efficiency. We show that
this technique is especially well adapted to the
modeling of cracking in microstructural models
directly obtained by images e.g. through micro-
CT tomography, which form grids of voxels.
We then present extensions of this technique
for interfacial damage and interactions between
bulk and interface cracks. Direct comparisons
between 3D microcrack networks obtained by
experiments and by simulations are provided.

2 The phase field method to fracture
The variational approach to fracture formu-

lates the crack propagation problem as a min-
imization problem, where the energy of the
cracked solid is expressed by:

E =

∫
Ω

Ψ(u,Γ)dΩ +Gc

∫
Γ

dΓ (1)

where Ψ(u,Γ) is the strain density function de-
pending on the displacement field and the crack
network, collectively denoted by Γ, and Gc de-
notes the toughness in the sense of Griffith. The
variational principle can be formulated as fol-
lows: for a given load, find the displacement
field and the crak network Γ minimizing the en-
ergy, with a constraint of positive crack prop-
agation rate. A direct use of this approach in-
duces intractable numerical complications. To
avoid this difficulty, a regularized approach of
discontinuities description has been proposed,
where the original function is replaced by an

approximate one [1]. In this framework, the
cracks are no more described by surfaces but by
a field of damage pase d(x). The energy is then
expressed by:

E =

∫
Ω

Ψ(u, d)dΩ +Gc

∫
Ω

γ(d,∇d)dΩ (2)

where γ is a function describing the crack den-
sity. The variational problem is here only re-
lated to variable fields, which avoids complex
numerical techniques associated to remesh-
ing crack surfaces. The variational prob-
lem can be formulated in a simpler frame-
work by introducing a time discretization T ={
t0, t1, ..., tn, tn+1, ..., tN

}
. At each time step

tn+1, the problem relies on determining the dis-
placement field un+1 and the damage field dn+1

such that:

un+1, dn+1 = Argmin
u∈KA

0≤dn≤dn+1

E (3)

where KA is a field of kinematically admissible
displacements. Using a so-called first-order for
the crack density function (see e.g. [7]):

γ(d,∇d) =
1

2ℓ
d2 +

l

2
∇d · ∇d, (4)

we obtain coupled problems to determine d(x)
and u(x), ∀x ∈ Ω (see e.g. [7, 11]):


2(1− d)H− gc

ℓ
{d− ℓ2∆d} = 0 in Ω,

d(x) = 1 on Γ,
∇d(x) · n = 0 on ∂Ω,

(5)
and 

∇ · σ(u, d) = f in Ω,
u(x) = u on ∂Ωu,
σn = F on ∂ΩF .

(6)

In (4), ℓ is a regularization parameter related
to crack width. A history function for the strain
density function H(x, t) is introduced, where t
denotes time (or loading evolution in a quasi-
static framework), to introduce the irreversibil-
ity of damage growth [7] and possible opening
and closure of cracks:
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H(x, t) = max
τ∈[0,t]

{
Ψ+ (x, τ)

}
. (7)

In (7), Ψ+ is the positive part of the strain
density function such that: Ψ = Ψ+(ε+) +
Ψ−(ε−) and is defined according to:

Ψ+(ε) =
λ

2

(
⟨Tr(ε)⟩+

)2
+ µTr

{(
ε+

)2}
,

(8)
where ε is the linearized strain tensor, ⟨x⟩± =
(x± |x|) /2 and ε± denote positive and nega-
tive parts of the strain tensor (see [7, 11]). The
choice of the parameter ℓ has been discussed
in [2, 3, 10, 13].

In (6), σ = ∂W
∂ε

is the Cauchy stress tensor,
f is a body forces vector and u et F are pre-
scribed displacement and force on the related
boundaries ∂Ωu and ∂ΩF , respectively. Above,
∇(.) and ∇ · (.) denote gradient and divergence
operators. For the strain density function (8),
the constitutive law is obtained as [7]:

σ =
(
(1− d)2 + k

) {
λ ⟨Trε⟩+ 1+ 2µε+

}

+ λ ⟨Trε⟩− 1+ 2µε− (9)

where k << 1 is a positive scalar parame-
ter introduced to avoid loss of stability in fully
damaged elements. Eqs. (5)-(6) are solved by
a classical finite element method at each time
stem (load increment).

3 Extension of the phase field method to in-
terfacial damage

In this part, we present an extension of the
phase field method to interfacial damage as pro-
posed in [12], this type of mechanism being es-
pecially important in concrete materials.

Figure 1: Regularized representation of a crack and of an
interface: (a) solid containing an interface and a crack,
with possible propagation of the bulk crack in the inter-
faces; (b) regularized representation of an interface; (c)
regularized representation of a crack.

We consider here a set of interfaces between
the inclusions and the matrix, denoted collec-
tively by ΓI . During loading, cracks can propa-
gate in the matrix but can also propagate within
the interfaces, as depicted in Fig. 1(a). Reg-
ularization of interfacial discontinuities is per-
formed according to the framework proposed in
[12]. Both bulk and interfacial cracks are asso-
ciated with the field d(x, t) (see Fig. 1(c)), while
regularized interface indicators are associated
with a fixed scalar field β(x) (see Fig. 1(b)) only
employed to represent geometrically the inter-
faces in regular grids of voxel type, and which
satisfies:


β(x)− ℓ2β(x)△β(x) = 0 in Ω,
β(x) = 1 on ΓI ,
∇β(x) · n = 0 on ∂Ω,

(10)

where ℓβ is a regularization parameter for the
interfaces. The variational principle (3) is ex-
tended by including the presence of interfaces
and of a different associated behavior by modi-
fying the expression of the energy as:

E =

∫
Ω

Ψe (εe(u, β), d) dΩ
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+

∫
Ω

[1− β(x)]gcγd(d)dΩ +

∫
Ω

ΨIγβ(β)dΩ.

(11)

In (11) ΨI is a strain density function de-
pending on a displacement jump across the in-
terface ΓI . In the context of regularized discon-
tinuities, the strain field can be decomposed ac-
cording to:

ε = εe + ε̃, (12)

where εe is the strain part associated to the bulk
and ε̃ represents the part of the strain induced by
the regularized displacement jump and where
[12]:

ε̃ =
1

2
(n⊗ [[u]] + [[u]]⊗ n) γβ(x). (13)

This decomposition is proposed such that
ε̃ → 0 away from the interfaces, inducing
β(x) → 0. The term [1 − β(x)] is introduced
to verify that when β(x) → 0 (away from the
interfaces), then γβ → 0 and εe → ε. A defini-
tion for the regularized displacement jump can
be found in [12].

4 Applications to microstructures of ce-
mentitious materials

We propose here some applications of micro-
cracking simulations and comparisons with in-
situ testing experiments combined with micro-
CT images. In Fig. 2, we consider a sample
of lightweight concrete (containing PE beads).
The microtomography allows obtaining a full
3D representation of the sample microstructure
geometry (after a treatment of the grey-level im-
ages and segmentation procedure). The initial
model can then be used to simulate the initia-
tion and propagation of microcracks by using
the above phase field framework.

(a)                                                 (b)

(c)                                                 (d)
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Figure 2: (a) Full image obtained by micro-CT scan of
a lightweight concrete sample: (b)-(c)-(d) show different
view of the associated mesh containing 17M elements.

A mesh is then constructed from the seg-
mented image, either by associating directly
each voxel to a finite element in a regular
mesh (which limits the size of the considered
zone), or by reconstructing the interfaces and
remeshing the constructed geometry (unstruc-
tured mesh). This last technique allows refin-
ing and coarsening some areas to limit the num-
ber of elements and to analyze larger domains
within the segmented image. In Fig. 3, an ex-
ample of comparison between simulation and
experiment is presented. The external boundary
conditions applied on the boundary of the nu-
merical model are obtained from experimental
3D image correlation. We can observe that the
simulations provide a very good prediction as
compared to experiments. it is also noteworthy
that the local (microstructural) damage parame-
ters have been identified by an inverse approach
analysis (see [8]).
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F = 1.800 kN

XY

Z

F = 1.862 kN

F = 1.937 kN

Figure 3: Comparisons between cracks obtained from
experiments and by in-situ experimental test in a
lightweight concrete: (Left: experiments; right: numer-
ical simulations by phase field method).

Another example of such comparison is pro-
vided in fig. 4. Here we consider a sample of
lightweight plaster (plaster matrix with PE in-
clusions). The geometry is here simpler and
allows considering the whole sample. We can
here again note the very good predictability of
the simulation, which allows to capture a large
number of cracks observed in the simulation.

(a) (b) (c)

Figure 4: (a) Geometry of the lightweight plaster sample;
-b) experimental cracks; (c) cracks obtained by the nu-
merical simulations ( for the same applied load F = 2.64
kN) [9].
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