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Abstract. In the publication at hand, a rate dependent plasticity model is introduced to describe the
constitutive behavior of concrete. The smooth three surface Drucker-Prager yield function with caps
is modified to account for the rate effects by use of the viscoplastic consistency model. Moreover, the
fracture process is described via the eigenerosion approach in the framework of variational eigenfrac-
ture by coupling the failure with the evolution of plasticity. This is carried out by making the fracture
surface energy dependent on the internal variable.

1 INTRODUCTION

The study of concrete material and its nu-
merical characterisation has been a major field
of research in the past decades. Upscaling the
processes happening in the microstructure to
capture a realistic response would at best, if
all these processes are known, produce a very
complicated and numerically inefficient model.
Nonetheless, features like quasi-brittle fractur-
ing and rate dependency, taken into account in
this work, strongly determine the material be-
haviour at very high dynamic loading condi-
tions.

The eigenfracture scheme, introduced in [1,
2], is a reliable method to model Griffith-like
crack propagation which stems from the vari-
ational approach of fracture and has delivered
very good results for static and dynamic load-
ings in elasticity, see [2, 3]. This work presents
the extension of the approach to rate-dependent

plasticity material behaviour. Crucial is the de-
termination of the crack-driving force based on
the energetic description, where during the his-
tory of loading, a competition between the bulk
energy and the surface fracture energy deter-
mines the crack propagation criterion and its di-
rection. This is done by minimizing the total
potential of the system, which gives rise to a
binary element erosion, where an element can
either be intact and carry loads or eroded and
possesses no stiffness. The main advantages of
the proposed approach are the straightforward
implementation and its computation efficiency.

The bulk material is modelled via a rate de-
pendent Drucker-Prager plasticity cap model.
As depicted in [6], different mechanisms are
present on the microscopic and structural level,
which require loading rate dependency of the
constitutive laws. This rate effect is considered
by implementing a consistency model in the
yielding surface, where its hardening depends
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not only on the internal variable but also on its
rate. Moreover, the constitutive relations are
determined in the microplane framework in or-
der to regard the induced anisotropy introduced
by different evolutions of plasticity on each mi-
croplane.

The ability of the proposed formulation is
tested via some numerical examples from lit-
erature and experiments. Despite the promis-
ing results at the current stage, further investiga-
tions of the mathematical eigenfracture descrip-
tion and validations of the model at more com-
plex loading scenarios are necessary and part of
our ongoing research.

2 THEORETICAL EVOLUTION

The core of this work is a twofold objective
that starts with formulating a proper rate depen-
dent material model for concrete in the frame-
work of the microplane model and continues by
describing the fracture phenomenon using the
variational eigenfracture scheme initially intro-
duced in [1].

2.1 Rate dependent Drucker-Prager yield
surface with caps

An established technique to formulate the
constutuive behavior of concrete is the mi-
croplane model. In this procedure, using e.g.
the kinematic constraint, the macroscopic strain
tensor is projected onto each microplane and
decomposed into a volumetric and deviatoric
part, namely, εV and εD, respectively. By uti-
lizing a microplane energy functional, one can
calculate the microplane stresses and tangent
moduli on the basis of thermodynamic princi-
ples. Finally, all the microplane quantities can
be homogenized by using a specific numerical
integration to calculate the macroscopic values.
In this work, we adopt the three surface smooth
Drucker-Prager yield function, fully elaborated
in [7], and formulate the rate dependent con-
stitutive description of concrete. Thereby, we
start with the representation of the macroscopic

stress tensor

σ =
3

4π

∫
Ω

[KmicV (εV − εvpV )2 +

2GmicDevT ·
(εD − εvpD ) · (εD − εvpD )]dΩ ,

(1)

with the volumetric projection tensor V and the
deviatoric one Dev. The viscoplastic inelastic
strains are represented by εvpV and εvpD . Kmic and
Gmic are the microplane bulk and shear mod-
ulus. The integration over a total number of
42 microplanes takes place over the domain Ω,
which, in the finite element setting, is the inte-
gration point.
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Figure 1: Drucker-Prager yield function with caps.

Fig. 1 represents the yield function in the mi-
croplane that reads

fmic =
3

2
σeD · σeD+

f 2
1 (σeV , κ, κ̇)fc(σ

e
V , κ, κ̇)ft(σ

e
V , κ, κ̇) ,

(2)
which depends on the microplane deviatoric
elastic stresses σeD, volumetric elastic stresses
σeV , hardening internal variable κ and its rate κ̇.
The three functions in the second part of Eq.
(2) are the standard Drucker-Prager surface f1,
compression cap fc and tension cap ft that re-
spectively read

f1(σeV , κ, κ̇) = σ0 − α σeV +Hκ+ Y κ̇ ,

fc(σ
e
V , κ, κ̇) = 1 −Hc

(
σCV − σeV

) (σeV − σCV
)

X2
,

ft(σ
e
V , κ, κ̇) = 1 −Ht

(
σeV − σTV

) (σeV − σTV
)

(T − σTV )
2 .

(3)
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In this formulation, hardening of the material
depends on the evolution of variable κ and its
rate κ̇. This representation of the rate effect is
known as the consistency viscoplastic formu-
lation, see [8, 9]. In Eq. (3), Y is a harden-
ing modulus which is calculated from the initial
yield stress σ0 and the viscosity parameter η as

Y = η σ0 . (4)

Due to the fact that this is a brief introduction
of our research, the explanation for the rest of
material parameters in Eq. (3) can be found
in [7]. The evolution of the volumetric and de-
viatoric inelastic strains is formulated using the
plastic multiplier λ and the flow directions mv

and mD. On the other hand, the hardening pa-
rameter κ has a simple linear dependence on the
plastic multiplier. Thus, one can write

ε̇vpV = λ̇
fmic

∂σeV
= λ̇ mV ,

ε̇vpD = λ̇
fmic

∂σeD
= λ̇mD ,

κ̇ = λ̇ .

(5)

If a stress state, represented by the trial val-
ues σe,trV and σe,trD , lies outside the yield surface
(fmic > 0), a return mapping algorithm should
project these values onto the yield surface val-
ues σe,n+1

V and σe,n+1
D , where n+ 1 refers to the

current time step. By exploiting a backward Eu-
ler scheme, the current stresses and hardening
variables are calculated as

σe,n+1
V = σe,trV −Kmic εvp,n+1

V ,

σe,n+1
D = σe,trD − 2Gmic εvp,n+1

D ,

κn+1 = κn + ∆λn+1 .

(6)

Eqs. (6) combined with (fmic > 0) form a non-
linear system of equations that can be solved by
a local Newton-Raphson iterative scheme. The
rate of the internal variable at the current time
step is calculated as

κ̇ =
∆λn+1

∆t
. (7)

The accumulation of plasticity for the integra-
tion point is given from the homogenized vale
of the internal variable as

κhom =
3

4π

∫
Ω
κdΩ

3
4π

∫
Ω
dΩ

. (8)

2.2 Eigenerosion formulation
Eigenerosion is a version of the eigenfrac-

ture scheme, presented in [1], that originates
from the variational fracture. A regularized en-
ergy functional that combines the stored energy
and the fracture surface energy is constructed
in terms of the Γ-convergence setting. The ba-
sic idea of the scheme is that an eigendeforma-
tion field is used to describe the non continu-
ous part of the domain (e.g. cracks) for the
crack-tracking problem. As a result, the mini-
mization with respect to the displacement and
crack fields, automatically delivers the neces-
sary equations for the mechanical and fracture
solutions. For the sake of simplicity, in the fol-
lowing we will give the essence of the approach
for the case of rate dependent plasticity model.
The details of the technique and several appli-
cations can be found in [1–3]. The Griffith-
like energetic criterion for the eigenerosion ap-
proach can be summarized in the discretized
setting for an element K in

− ∆FK = −∆EK − f(κ)Gc · ∆AK , (9)

with the energy release rate Gc, −∆EK , the
released energy for erosion of an element and
neighbourhood support ∆AK , which actually
represents the nonlocal surface of a crack incre-
ment. The notion of nonlocality is used due to
the fact that the calculation of the fracture sur-
face energy does not depend only on the ele-
ment itself, but also on its neighbourhood. The
scaling function for the surface fracture energy
reads

f(κ) =
1

1 + p
, (10)

where

p =
κ̂hom

κhomcrit

. (11)

κ̂hom is the maximum value of κhom among all
integration points of element K. This coupling
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of erosion with plasticity is motivated by the
fact that concrete cannot carry indefinite plas-
tic strains. Hence, the increase of these inelas-
tic strains should encourage erosion. A fair ap-
proximation for ∆EK can be calculated as

∆EK =

∫
Ω̄

ΨmacdΩ̄ , (12)

with the homogenized macroscopic free energy

Ψmac : =
3

4π

∫
Ω

ΨmicdΩ

=
3

4π

∫
Ω

[d
′ 1

2
Kmic (εV − εvpV )2

+ d Gmic (εD − εvpD ) · (εD − εvpD )

+ f(H, κ)]dΩ ,
(13)

and the domain of integration for a specific ele-
ment Ω̄. In Eq. (13), d and d′ are given as{

d = 0 fracture ,

d = 1 no fracture ,
(14)

{
d

′
= 0 tr(εV ) > 0 ,

d
′
= 1 otherwise .

(15)

The contribution of the energy that comes
from hardening is approximated as f(H, κ) =
0.5H κ2. In a fully thermodynamic consistent
setting, erosion is applied to the macroscopic
stress tensor

σ =
3

4π

∫
Ω

[d
′
KmicV (εV − εvpV )2 +

d 2GmicDevT ·
(εD − εvpD ) · (εD − εvpD )]dΩ ,

(16)
and similarly for the effective tangent moduli.
The procedure starts by checking for each el-
ement the criterion formulated in Eq. (9) for a
given load step. If the accumulated energy over-
comes the fracture barrier, the element is eroded
by setting (partially) its stresses and stiffness to
zero and solve the system for a new equilibrium.
The above process is repeated in a frozen time
step until no element from the mesh fulfils the

fracture criterion. After this, the load is updated
for the next step. In this way, the eigenerosion
approach works in a binary sense, meaning that
an element in a given medium can either be in-
tact and carry loads or be eroded by irreversibly
losing its load bearing capacity.

3 NUMERICAL SIMULATION

3.1 Tensile test

The first numerical example introduced in
this section is a tensile test of a concrete speci-
men with two parallel notches at the mid-height
of the sample. This theoretical example is uti-
lized to show the rate dependency of the pro-
posed model and its contemplation in failure
mechanism. Fig. 2 shows the boundary con-
ditions and geometry of the analysed specimen,
where the dimensions’ unit is [mm]. Different
displacement rates are applied at the top part of
the specimen while the bottom part is clamped.
Table 1 shows the used parameters of the pro-
posed material model. The critical energy re-
lease rate is chosen as Gc = 6.5 · 10−2 kN/mm
and the critical value of the homogenized hard-
ening variable as κhomcrit = 1.0 · 10−6. The mate-
rial parameters are chosen arbitrarily in a range
that maintains general characteristics of con-
crete.

100
100
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198

4
20

 u(t)

Figure 2: Specimen geometry of the tensile test.
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Table 1: Material parameters for tensile test.

E [MPa] 30500

ν [-] 0.2

fuc [MPa] 20

H [MPa] 5.0 104

Rt [-] 1

σCV [MPa] −40

R [-] 2

η [s] 10.0

The focus of this example is the viscoplastic be-
havior of the material, hence, the wave propa-
gation along the specimen under high rates will
be neglected. This simplification does not im-
pact the quality of results on the one hand, and
emphasizes the viscoplastic nature of the pro-
posed model on the other hand. The numerical
simulations are performed under displacement
controlled conditions. Six different rates are ap-
plied to the sample and the response in terms of
reactions in loading direction and displacement
at the top is inspected. Fig. 3 depicts graph-
ically the achieved results. Due to the nature
of this example, the reader should not make a
quantitative relation to a specific type of con-
crete, but rather qualitatively observe the rate
effects.

Figure 3: Load displacement curves for different rates.

Figure 4: Mode I crack pattern.

For all the specimens, the Mode I failure mech-
anism is observed with a horizontal plane crack
starting from the notches, see Fig. 4. As it
is shown in Fig. 3, by increasing the loading
rate, the behavior approaches closer to the elas-
tic one. This hardening of the yield surface is
attributed to the rate κ̇, which prevents the evo-
lution of plasticity. It is clear that for very low
rates, the behavior is dominated only by elasto-
plasticity. Meanwhile, if the loading speed is
raised, viscosity is activated and more elastic
energy is stored inside the body. Moreover, one
can notice in the graph an increase in strength
that is only attributed to the material behav-
ior. With the growth of viscous effects, depen-
dency of fracture energy on plasticity decreases,
which postpones the initiation of erosion. The
role of viscosity in strength increase is one of
the mechanisms in delaying fracture initiation
in concrete. In literature, it is often reported
that inertia plays a major role in the strength in-
crease of concrete. For this reason, we examine
in the next example the effects of structural iner-
tia, introduced from the solution of the equation
of motion, combined with the viscosity of the
present model in a dynamic fracture problem.
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3.2 Compact tension specimen (CT) under
different rates

This example is chosen to show the effects of
rate dependency on the crack patterns of a con-
crete compact tension specimen. The geometry
and boundary conditions (BC) are shown in Fig.
5. At the bottom part of the notch, three dif-
ferent displacement rates u̇ are applied, specifi-
cally, 35 mm/s, 1300 mm/s and 4000 mm/s.

200

20018

55

 u(t)

Figure 5: CT geometry and boundary conditions.

The chosen material parameters are given in Ta-
ble 2. Moreover, the critical energy release rate
takes the value Gc = 5.5 · 10−2 kN/mm and
the critical value of the homogenized hardening
variable is chosen as κhomcrit = 1.0 · 10−6. A spe-
cific number of elements at the load application
is excluded from the erosion scheme in order

to avoid the failure of this region, which would
deprive a correct load transfer into the body.

Table 2: Material parameters for CT specimen.

E [MPa] 30000

ν [-] 0.18

fuc [MPa] 20

H [MPa] 1.0 104

Rt [-] 1

σCV [MPa] −40

R [-] 2

η [s] 15.0

Newmark scheme is adopted for the solution of
the time integration with the parameters β =
0.5 and γ = 0.7. These parameters introduce
numerical damping in the solution of the equa-
tion of motion, but, for very high loading rates,
this choice is necessary in order to maintain sta-
bility of the solution. For wave propagation and
depending on the mesh size, the time step is cal-
culated as ∆t = 7.0 · 10−7s.
The crack patterns for the experimental results,
that are well documented in [5], are given in
Fig. 6. The equivalent simulation results are de-
picted in Fig. 7. While the experimental setup
includes two steel frames in each side of the
notch to hold the sample and apply the load, in
our simulations this takes place directly at the
crack faces.

a) b) c)

Figure 6: Experimental results extracted from [5] for loading rates a) 35mm/s, b) 1300mm/s and c) 3967mm/s.
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a) b) c)

Figure 7: Simulation results for loading rates a) 35mm/s, b) 1300mm/s and c) 4000mm/s.

It can be seen in Figs. 6 and 7, that crack pat-
terns between experimental and simulation re-
sults match very well. Moreover, for almost
static loading (u̇ = 35 mm/s), a purely Mode
I cracking occurs and the energy is dissipated
in the shortest possible path. When the load-
ing rate increases, the energy accumulated at the
crack tip also increases, requiring a larger crack
surface for the energy dissipation, hence, the in-
clined crack in Fig. 7 b) is formed and a mixed
mode cracking is achieved. Moreover, for the
loading rate u̇ = 4000 mm/s, only one crack is
not enough to dissipate the accumulated energy.
As a result, branching occurs, see Fig. 7 c).
In absence of the rate effects, no corresponding
hardening evolution is present. Thus, the ma-
terials yield very early and plasticity develops
in considerable scales. In this case, very thick
crack patterns would be created due to the de-
pendency of erosion on κhom. Thereby, the rate
dependency not only provides a realistic con-
stitutive material behavior, but also ensures a
realistic crack pattern with the least dissipated
fracture energy.

4 CONCLUSIONS
The current contribution introduces a rate

dependent material formulation for concrete
which is put in the framework of eigenerosion
to provide crack-tracking. A smooth three sur-
face Drucker-Prager yield function with caps is
utilized to formulate the rate dependent prob-
lem. To this end, the consistency model is used

to describe viscoplastic behavior, where yield
surface hardening occurs by an internal vari-
able that describes plasticity and its rate. By
always projecting on the yield surface, Kuhn-
Tucker and consistency conditions are naturally
fulfilled. Taking into account plasticity in the
description of concrete behavior is motivated
from evolution of small scale damage in the mi-
crostructure.

In order to account for the effects of plasticity
evolution in the failure mechanism, the surface
fracture energy is scaled by a function that de-
pends on the internal variable. The existence
of minimizers for this problem are ensured by
the convexity of the energy functional. The reg-
ularization introduced by including the crack
neighbourhood into calculation of the fracture
energy avoids any mesh dependencies. The ef-
fects of mesh bias into crack propagation for the
eigenerosion approach were introduced in [4],
where adaptive refinement increases the pos-
sibilities of finding global minimizers for the
fracture simulations. The introduced examples
prove the capabilities of the proposed approach
in terms of material description and crack pat-
terns.
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