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Abstract. This paper presents an enhanced theoretical formulation and associated computational
framework for brittle fracture in nuclear graphite within the context of configurational mechanics.
A new condition for crack front equilibrium is exploited that leads to an implicit crack propagation
formulation. This paper focuses on an extension of our previous work, whereby the complex inter-
nal stress state in a nuclear reactor is the primary driver for crack propagation in individual graphite
bricks. The resulting crack path is resolved as a discrete displacement discontinuity, where the ma-
terial displacements of the nodes on the crack front change continuously, without the need for en-
richment techniques. Performance of the formulation is demonstrated by means of a representative
numerical simulation, demonstrating both accuracy and robustness.

1 INTRODUCTION
Understanding the behaviour of Advanced

Gas-Cooled Reactor (AGR) graphite cores with
multiple cracked bricks is paramount to the as-
sessment of structural integrity, safe operation
and life extension. In this paper, the latest
developments in the finite element modelling
and simulation of crack propagation in graphite
bricks are briefly presented.

Configurational mechanics (CM) provides
the theoretical basis for our work on crack prop-
agation. This approach has a strong physical
motivation, exploiting the 1st and 2nd laws of
thermodynamics to establish crack front equi-
librium and the crack path direction. The au-
thors have also developed the numerical tech-
niques to implement this theory within a finite
element analysis software framework (MoFEM
[9]). This provides the ability to simulate prop-
agating cracks in 3D solids that are discretely
and continuously resolved by adapting the FE
mesh in a smooth manner (exploiting the crack
front equilibrium condition), thereby avoiding
the need for enrichment.

CM dates back to the original work of Es-
helby and his study of forces acting on mate-
rial defects [1]. The concept of configurational
(or material) forces is now a well established
method to evaluate defects in a material provid-
ing a unified framework for the analysis of ma-
terial imperfections and has been adopted by,
amongst others, Maugin [2]. Steinmann [3] de-
veloped a computational strategy for the assess-
ment of fractured bodies. Miehe et al. [4,5] and
Kaczmarczyk et al. [6, 8] built on this work to
establish a finite element methodology for crack
propagation.

2 CRACK PROPAGATION PROBLEM

To formulate the crack propagation prob-
lem within the framework of configurational
mechanics, two related kinematic descriptions
are defined in the spatial and material set-
tings. In the former, the classical conservation
law of linear momentum balance is described,
where Newtonian forces are work conjugate to
changes in the spatial position, at fixed mate-
rial position (i.e. no crack propagation). In
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the material setting, which represents a dual to
the spatial setting, an equivalent conservation
law is described, where configurational forces
are conjugate to changes in material position
but with no spatial motion. This decomposi-
tion of the behaviour is proven to be a sim-
ple but powerful methodology for describing
crack propagation. The authors’ previous pa-
per [6] describes the mathematical formulation
for crack propagation and a methodology for re-
solving the evolving crack path within the con-
text of the finite element method, and repre-
sented an advancement of the work of Miehe
et al. [4, 5]. The current paper briefly explains
how this previous work has been extended for
internal stresses as the driver for crack propaga-
tion.

Key features of our work to date include:

• Griffith’s fracture criterion is expressed
correctly in terms of configurational
forces.

• An expression for equilibrium of the
crack front is established, balancing the
configurational forces on the crack front
with the resistance of the material. This
is exploited so that the crack front can ad-
vance continuously.

• To maintain mesh quality, a mesh
smoothing strategy, with surface con-
straints, is presented as a continuous pro-
cess as part of a problem-tailored Arbi-
trary Lagrangian Eulerian formulation.

• The spatial and material displacement
fields are both discretised using the same
finite element mesh, although we adopt
different levels of approximation for the
two fields.

• The resulting discretised weak form of
the two conservation equations repre-
sent a set of coupled, nonlinear, alge-
braic equations that is solved in a mono-
lithic manner using a Newton-Raphson
scheme.

• An arc-length method is adopted to trace
the dissipative load path for brittle frac-
ture propagation, using crack area rather
than displacements as a control.

The current material coordinates X are
mapped onto the spatial coordinates x via the
familiar deformation map ϕ(X, t). The physi-
cal displacement is:

u = x − X (1)

Ξ(χ, t) maps the reference material coordinates
χ on to the current material coordinates X, rep-
resenting a configurational change, i.e. exten-
sion of the crack due to advancement of the
crack front. Φ maps the reference material co-
ordinates χ on to the spatial coordinates x. The
current material and spatial displacement fields
are given as:

W = X − χ and w = x − χ (2)

Finite element approximation is applied to
the displacements in both the current material
and physical spaces. Three-dimensional do-
mains are discretised with tetrahedral finite el-
ements. In the spatial domain, hierarchical ba-
sis functions of arbitrary polynomial order are
applied, following the work of Ainsworth and
Coyle [7]. This enables the use of elements
with variable, non-uniform orders of approx-
imation, with conformity enforced across ele-
ment boundaries. In the material domain, linear
approximation is adopted, as this is sufficient
for describing the crack front.

Kaczmarczyk et al. [8] derived a new expres-
sion for equilibrium of the crack front:

Ẇ · (γA − G) = 0 (3)

where γ is the surface energy, A is a dimension-
less kinematic state variable that defines the cur-
rent orientation of the crack front [6,8] and G is
the configurational force calculated as the inte-
gral of the Eshelby stress Σ around the crack
front:

G = lim
|Ln|→0

∫
Ln

ΣN dL (4)

where This crack front equilibrium condition
balances the configurational forces on the crack
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Figure 1: Equations for crack propagation in the radiated graphite, i.e. brittle heterogenous material with internal stresses.

front with the resistance of the material. This
is exploited so that the crack front can advance
continuously, re-establishing the crack front to
the physically correct position each load step,
without recourse to any kind of crack tracking
algorithm, and without influence from the finite
element mesh.

3 INTERNAL STRESS DRIVEN CRACK
PROPAGATION

To account for the influence of internal
stresses, the residual, discretised equations for
spatial and material equilibrium are modified to
become:

rs = fs,int − fs,ext + λFr (5)
rm = G − fm,res + λGr (6)

fs,int and fs,ext are the standard vectors of nodal
spatial internal and external forces. fm,res is the
material resistance, which is a function of the
surface energy and the crack front orientation.
λ is the load factor. Fr and Gr are additional
terms that are included in the equilibrium equa-
tions to account for the internal stresses

Fr =

∫
βt

BTPMWL,radiationdV (7)

Gr =

∫
βt

BTFTPMWL,radiationdV (8)

(9)

where F is gradient of deformation, defined
with other quantities on Fig. 1.

3



Łukasz Kaczmarczyk, Hoang Nguyen and Chris J. Pearce

4 NUMERICAL EXAMPLE
An example of a keyway root crack in a nu-

clear graphite brick, driven by internal stresses,
is shown in the figure. The stress state is the re-
sult of operating at full power of 30 years. The
crack is initiated at one end of the brick at a
keyway root. The brick is only restrained to re-
move rigid body motion. The crack front ad-
vances simultaneously inwards to the free sur-
face of the bore and along the length of the
brick. Young’s modulus, E = 9600 MPa,
Poisson’s ratio, v = 0.2, and fracture energy,
γ = 145 J/m2. The analysis was undertaken
using MoFEM [9].

Figure 2: Progression of keyway root crack driven by in-
ternal stresses.

5 CONCLUSIONS
A novel formulation for brittle fracture in

elastic solids within the context of configura-
tional mechanics has been presented for the pre-
diction of crack paths in nuclear graphite. The
previous formulation [6, 8] has been extended
to account for internal stresses as a driver for
crack propagation. The formulation has been
tested on single graphite brick subjected to in-
ternal stresses.
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