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Abstract. In the already vast literature dealing with numerical simulations of fracture of concrete
elements or structures, a large number of papers deal with cohesive traction-separation laws. How-
ever, in many instances, this appears to be a secondary aspect of the published studies, the principal
one being the variant of the numerical algorithm being presented in the research. This makes dif-
ficult to compare the various available formulations for the vectorial traction-separation law (t–w
law). The present work aims at initiating a systematic comparison between the t–w laws, and this is
done comparing a subset of the possible formulations using exactly the same numerical algorithms.
The analysis is restricted, in this contribution, to damage-based models in the tensile zone (positive
normal components of the traction and the crack displacement vectors). All the models use the same
uniaxial softening function and the emphasis is on the vectorial character of the t–w law, namely,
on the influence of (1) the lack of coaxiality of t and w; (2) the shape of the damage criterion in
the traction space; and (3) the influence of the ratio of fracture energies in pure modes I and II. The
simulations have been carried out within the finite element framework COFE (Continuum Oriented
Finite Element), which implements elements with an embedded adaptable crack to reproduce fracture
of concrete as well as a smeared version that, essentially, unifies the numerical algorithms of both
approaches.

1 INTRODUCTION

In the already vast literature dealing with co-
hesive cracking in concrete and other quasib-
rittle materials since Hillerborg introduced the
“fictitious crack model” in the mid 1970s [1],
the numerical techniques aimed at the appli-
cation of cohesive models to structural analy-

sis are predominant, especially along the last
two decades. An essential ingredient of such
numerical models is the behavior of the cohe-
sive crack itself, characterized by a law relat-
ing the traction vector transferred across the
crack faces t to the relative displacement vec-
tor between those faces w, usually abbreviated
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to traction-separation law of the cohesive crack
(or t-w law). Unfortunately, most of the avail-
able publications are more focused on the com-
putational technologies than in the cohesive be-
havior itself and it is difficult to draw general
conclusions about the suitability of the various
traction-separation laws because few studies are
available that compare them without concurrent
substantial changes in numerical methodologies
and algorithms.

The present work reports the initial results
of a systematic research on the essential condi-
tions that a traction-separation law should fulfill
to guarantee that it does not carry any delete-
rious collateral effects on the numerical calcu-
lations. The paper is organized as follows: A
brief account is given in Sec. 2, which is fol-
lowed, in Sec 3, by the description of a family of
damage-based models which includes most of
the models of that kind that can be found in the
literature; Sec. 4 reports results of a numerical
study on the effect of the two principal param-
eters of the family of models in a paradigmatic
case; Sec. 5 closes the paper with the main con-
clusions of the work.

2 BACKGROUND

2.1 Cohesive crack basics

This work focuses on the generalization of
the cohesive model proposed initially for con-
crete cracking in Mode I (pure opening) by
Hillerborg and co-workers, which has been ex-
tensively used for that material as well as many
other quasibrittle materials [1–5]. In essence,
the model assumes that the material outside
the fracture surfaces remains in linear-elastic
regime at all times; when, a a point, the max-
imum principal stress σ1 reaches the tensile
strength ft of the material, a crack forms at that
point which is locally perpendicular to the max-
imum principal stress direction. When the crack
opening w of that crack at that point increases
monotonically in pure Mode I, the model as-
sumes that the traction vector over the crack
faces is normal to the crack and its magnitude
σ is given by a function of w which is a mate-

rial property; thus, we write;

σ = f(w) (1)

For general purpose computations, in which no
pure opening mode can be anticipated, a vecto-
rial relationship is required relating the traction
vector t to the separation vector w defined as
the displacement of one face of the crack with
respect to the other (which is taken as a ref-
erence. f(w) is called the softening curve in
pure Mode I. It is schematically represented in
Fig. 1 and is one of the fundamental ingredients
of the cohesive behavior, but not the only one,
because, in general, cracks do not evolve in pure
Mode I.

Figure 1: Cohesive crack model in pure opening mode
(Mode I). The equivalent values for the traction (teq) and
the separation (weq) are defined in Sec. 3 for the models
under scrutiny.

2.2 Traction separation laws
In the published works, three families of

traction-separation laws can be identified:
(1) Elastic (reversible) models in which the t-w
law derives from a potential function and, thus,
cannot correctly describe unloading processes
(see [6] for a recent review of such kind of mod-
els).
(2) Elasto-plastic models in which the formula-
tion parallels that of classical continuum elasto-
plasticty, but vectorial relationships between t
and w are set instead of σ and ε [7–13]; since
the stiffness of the crack just after initiation
is nominally infinite, in the limit its behav-
ior should be rigid-plastic, and these models
are characterized by a very stiff unloading re-
sponse.
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(3) Damage-based models obtained by export-
ing classical continuum damage approaches to
vectorial, rather than tensorial, relationships,
characterized by displaying linear unloading to
the origin [14–24].

Obviously, models exist that combine some
of the characteristics of the aforementioned
ones, an a few more that do not fit into any of
those categories. Among the last-mentioned are
the pioneering works of Rots and others [25,26]
in which the the formulation is strictly tangent
and so is based on differential relationships of
the hypoelastic type ṫ = Kẇ, where K is a tan-
gent stiffness tensor depending on other state
variables. The essential of these models was
later reformulated in secant form [11,12,27,28];
versions of such kind can be found in various
commercial finite element programs.

2.3 About traction-separation coaxiality

There is a good reason to believe that, in
this kind of models, the vectors t and w must
be coaxial (parallels): this is a necessary con-
dition for the fracture power per unit surface
t · ẇ be frame independent [29]. This is due
to a lack of rotational equilibrium in the sys-
tem of forces acting on the crack faces [30],
as depicted in Fig. 2. This fundamental facts
attracted little attention until relatively recent
times, and most existing models allow non
coaxial traction-separation laws, and so does
the family of models that we consider in the fol-
lowing.

Figure 2: Resultant forces on the faces of the cracks in
an elemental ball diagonally split by the crack; δA is the
area of the crack disk (adapted from [31]).

3 A DAMAGE-BASED FAMILY OF
TRACTION-SEPARATION LAWS

3.1 Basic formulation
The model is developed in the framework

of constitutive equations with internal variables
(see, e.g., [32]) in which the usual tensorial
variables stress and strain are replaced by the
vectorial variables t-w. The simplest model
assumes a single monotonically increasing in-
ternal variable κ, and we look for a function
t = t(w, κ;n) that includes a parametric de-
pendence on the unit normal to the crack faces
n. Assuming that the Helmholtz free energy
per unit area is a function ψ(w, κ;n) depending
quadratically on w, and assuming, furthermore,
material isotropy, we get, following a proce-
dure similar to that followed by Jirásek in [10]
and [33], the following expression for the cohe-
sive traction:

t = kn(κ)wnn+ ks(κ)ws

where kn(κ) and ks(κ) are, respectively, the
normal and shear stiffnesses which must be de-
creasing functions of κ to satisfy the principle
of universal dissipation. In the previous expres-
sions, wnn and ws are the vectorial projections
of w, respectively, on the normal and on the
plane of the crack; their analytical expressions
are

wn := w·n , , ws := w − wnn.

To simplify the model, it is usually assumed that
the ratio of the stiffnesses is constant [10, 14,
33], and write ks(κ) = β2kn(κ), β = const >
0, to get

t = kn(κ)(wnn+ β2ws) . (2)

To complete the model, we need to establish the
laws for damage growth, and the function for
the normal stiffness. Thus, we first assume that
there exist: (1) a scalar function of the sepa-
ration vector that we call equivalent separation
weq(w), and (2) a damage criterion stating that
κ is the historical maximum of weq, which re-
duce to any of the equivalent conditions

weq(w) ≤ κ ⇔ κ = max[weq(w) ] . (3)
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If we choose function weq(w) so that in pure
Mode I its value coincides with the normal sep-
aration, i.e., satisfying

weq(wn) = w , (4)

and we further impose the condition that in
Mode I the relation between the stress and
the separation is given by the softening func-
tion (1), it is easy to reduce expressions (2) and
(3) to

t=
f(κ)

κ
(wnn+β

2ws), κ=max[weq(w)], (5)

since, then, for pure monotonic opening mode
we have κ = wn = w, ws = 0 and the fore-
going equation trivially reduces to t = σn =
f(w)n, which is the vectorial form of Eq. (1).

One of the simplest expressions for weq sat-
isfying condition (4) —and the one investigated
in the remaining part of the paper— is the fol-
lowing:

weq :=

√
w2

n +
β2

α2
w2

s , (6)

where ws := |ws| =
√
ws ·ws is the magnitude

of the shear component, and α is a further ma-
terial constant which meaning is disclosed next.

3.2 Fracture energies
Although, in practice, it is impossible to ini-

tiate cracking of the bulk material in mixed
mode, because the most unfavorable orienta-
tion for cracking always coincide with a prin-
cipal stress plane, we can, based on the fore-
going equations, compute the theoretical value
of the fracture energy along any assumed path
in the separation space. In particular, we as-
sume a proportional separation path in which
w = wnn + mwnes, where es is a constant
unit vector perpendicular to n and m := ws/wn

is the constant ratio between the shear and the
normal components of the separation vector. In
this case we have, substituting in (6) and assum-
ing that wn increases monotonically,

κ =
√
α2 + β2m2

wn

α
⇒ wn =

ακ√
α2 + β2m2

and the fracture energy for final fracture is

GF (m) =

∫ ∞
0

t· ∂w
∂wn

dwn

=
α2(1 + β2m2)

α2 + β2m2

∫ ∞
0

f(κ)dκ

and since the last integral equals the Mode I
fracture energy, we have that the theoretical
fracture energies in mixed mode with propor-
tional separation path, and in Mode II are, re-
spectively,

GF (m) =
α2(1 + β2m2)

α2 + β2m2
GI

F , (7)

GII
F = α2GI

f , (8)

where the last expression is obtained as the limit
of the first for m→∞.

It may be noticed that for α = 1, the fracture
energy is fully path-independent for any value
of β.

Most of the published models can be rewrit-
ten as particular cases of the foregoing model.
Most of them correspond to cases with coaxial
traction-separation and path-independent frac-
ture energy (α = β = 1) [20–23], some imply
central forces (β = 1) [17], some enjoy pah in-
dependent fracture energy (α = 1) [14–16], and
the models in [18,19,24] depend on a single pa-
rameter implying a functional relationship be-
tween α y β.

3.3 Damage criteria
The damage criterion expressed in equiva-

lent separation is the inequality of equation (5)1,
with weq given by (6). Its graphical representa-
tion in a plane wn-ws shows that the instanta-
neous elastic domain is a quarter of an ellipse
with semi-axes κ and ακ/β (Fig. 3a). The elas-
tic domain homogeneously expands with in-
creasing damage κ. Since the initial elastic do-
main collapses into the origin, the crack initia-
tion condition is better described in the traction
space which is obtained as described next.
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Figure 3: Damage criteria and their evolution: (a) in
the separation space, and (b) in the traction space. The
shaded quarter-ellipses are the instantaneous elastic do-
mains, which expand homogeneously in (a) and shrink in
(b).

We solve from Eq. (5)1 for the normal and
shear components of w as functions of the cor-
responding components of t and insert the re-
sult in the criterion expressed in separation; af-
ter simplifying an reordering we get the equa-
tion of the elastic domain in the traction space
as

teq :=

√
t2n +

t2s
α2β2

≤ f(κ) (9)

which shows that the elastic domains are, again,
similar quarter-ellipses with center at the ori-
gin an semi-axes f(κ) and αβf(κ) as shown in
Fig. 3b. Also shown in this figure is the crack
initiation criterion (thick blue curve).

Turning now to the crack initiation in an
initially uncracked continuum, Fig. 4 shows
Mohr’s circles for simple tension an pure shear
for which the experience shows that cracks form
perpendicular to the principal direction of max-
imum tension. Thus, the crack initiation crite-
rion (blue line in the figure) must be tangent
to Mohr’s circles at their rightmost point, and
external to the Mohr’s circles anywhere else,
which implies that α and β must satisfy αβ > 1.

Figure 4: Mohr’s circles at crack initiation in an un-
cracked continuum point for simple tension an pure shear.

Figure 5: Combinations of α and β explored in the paper.

Figure 5 displays a bilogarithmic β-α dia-
gram showing the combinations of values that
are investigated in this paper, all satisfying the
previous condition.

4 EFFECT OF PARAMETERS α AND β

4.1 Numerical method
Figure 6 shows the main ingredients of the

numerical model, which coincide, in essence
with those presented in [21], except that vectors
t y w do not need to be parallel (they are not if
β 6= 1) and the equivalent separation does not
need, either, to be equal to the magnitude of w
(it is not if α 6= β).

Figure 6: Cohesive crack embedded in a finite element
(adapted from [34]).

Otherwise, the element type (constant strain
triangles), the crack kinematics (strong discon-
tinuity), and the remaining characteristics are
identical to those described in [21]. Among
those characteristics, the following are worth
being recalled: (1) the crack is required to sat-
isfy local equilibrium, which implies that its ex-
act position in the element is not required; (2)
the computations are strictly local, i.e., no crack
tracking algorithm is used, the orientation of the
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crack in the element and the corresponding soli-
tary node are determined based only of the cur-
rent nodal displacements in the corresponding
element; however, two strictly numerical expe-
dients are used to avoid crack locking: (3) the
initial elastic stiffness matrix is used for the el-
ement throughout the computation; and (4) the
crack in the element is allowed to reorient itself
following the principal stress rotations while its
equivalent crack opening is small compared to
w1 defined in Fig. 1 (this is called limited crack
adaptability).

Feature (3) implies a large number of itera-
tions (but these are very fast because back sub-
stitution is only required), which turns out to
be a virtue when combined with feature (4)
since the cracks are given more opportunities to
adopt the right orientation (or even get closed),
while seeking for convergence, in a kind of self-
annealing process.

With that procedure and the new equations
for the traction-separation law, an extensive
parametric study is under way to ascertain the
influence of the parameters α and β. The first
step consists in simulating highly symmetric
problems in which, theoretically, the dominant
crack is subjected to pure Mode I, as in the case
of a three-point bent beam. In such situation,
the results of the simulation should be strictly
independent of α and β, since the shear compo-
nents of the traction and the separation vectors
are zero in Mode I. The simulations and their
main outcome are described next.

4.2 Three-point bending of a beam

Figure 7 displays the geometry of the beam
and the two finite element meshes used in the
computations, which were created with the fi-
nite element mesher GMSH [35], with default
settings.

The softening curve was taken to be lin-
ear (dashed straight line in Fig 1) with ft =
3.0MPa and w1 = 0.030mm; the elastic modu-
lus and Poisson’s ratio were, respectively set to
E = 30GPa and ν = 0.17.

Figure 7: Geometry of the specimen and FE meshes used
in the simulations (D = 100mm); coarse mesh (a): 1909
nodes, 3715 elements; fine mesh (b): 13236 nodes, 26315
elements.

The computations were carried out under
control of the elongation wB of the bottom line
in the mid-span, as defined in Fig. 7. A to-
tal elongation of 0.1mm was applied in 100
identical steps. Computations have been carried
out for the parameter combinations marked with
full circles in the diagram of figure 5.

4.3 Numerical results
4.2.1 Coaxial models (β = 1).
Numerical simulations with β = 1 (t and w
coaxials) were carried out for α = 1, 2, 4, 8, 16
for both the coarse and the fine mesh. Figure 8
displays the effect of α on the curves load v.s.
mid-span elongation, wB.

The inset in the figure shows a zoom of the
area close to the peak in which it is clear that,
for each mesh, the effect of α is to increase
the load for a given abscissa. The increase is
greater when increasing α from 1 to 2, but di-
minishes for any subsequent doubling and satu-
rates rapidly for α > 4 to reach a nearly asymp-
totic value for α = 16.

It can also be noted that for α = 1 (path-
independent fracture energy), the effect of the
mesh is very small, negligible for any practical
purpose. However, the effect of increasing α
is stronger for the finer mesh, and the question
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arises about the evolution of the effect upon fur-
ther refinement.

Figure 8: Load (P/B) vs. mid-span elongation (wB) for
β = 1 and α = 1, 2, 4, 8, 16. Curves for coarse mesh in
blue, in black for fine mesh.

4.2.2 Non coaxial models (β 6= 1).
In the set of simulations in which α was kept
constant equal to 1 and β was varied from 1
to 32, the trend of the results were found to
be completely different from those in the pre-
vious paragraph: as can be observed in Fig. 9,
the load-wB curves are drastically different for
values of β greater than 2 for the coarser mesh.

Figure 9: Load (P/B) vs. mid-span elongation (wB) for
α = 1 and β = 1, 2, 4, 8, 32 for the coarse mesh.

In addition to notable increases in the peak
load, the lack of coaxiality of t y w induced by
β lead to unstable behavior in the post peak for
values of β of 4 or greater.

The situation is even worse for the finer
mesh: Figure 10 shows the corresponding
curves for that mesh for a few combinations of
α and β; the curve for α = β = 1 computed
using the coarse mesh is also included for com-
parison.

Figure 10: Load (P/B) vs. mid-span elongation (wB)
for various combinations of α, β and mesh.

The curves for β = 1 are smooth and indis-
tinguishable at the scale of the plot. As β is
increased to 2 and then to 4, a sharp increase of
the peak load appears together with a sharp drop
just after the peak which indicates an initial re-
luctancy of the initially disperse cracking region
against localization. Comparing with the previ-
ous figure for the coarse mesh, we see that the
results show a clear spurious mesh-dependence
for β ≥ 2.

To complete the overview of the results,
Fig 11 displays the cracking patterns for the
for the finer mesh and the combinations of α
and β discussed in the previous paragraph. The
displayed cracks correspond to the last step of
the computations (wB = 0.1mm). The white
dashed lines indicates, for each case, the central
cross-section of the specimen; the arrows at the
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top of these lines represent the residual loading
force at the mid-point. Note that in the right-
most image, which corresponds to β = 4, the
crack is far from vertical, and that its mouth is
far away from the mid-plane; note also the large
bulb of diffuse cracking around the crack tip in
this case.

Figure 11: Cracking pattern at the end of the last step
(mid-span elongation wB = 0.1mm) for the finer mesh
and various combinations of α and β. A central slice of
each specimen is drawn; the central section is marked by
a white dashed line and by the upper arrow which repre-
sents the residual loading force.

5 CONCLUSIONS
From the foregoing theoretical and numeri-

cal results we can draw the following conclu-
sions:

1. A damage-based model has been pre-
sented that is defined by equations (5) and
(6), which includes and extends most of
the models of this type found in the liter-
ature.

2. The shear energy factor α controls the
ratio between the fracture energies in
modes II and I according with Eq. (8),
and does not introduce spurious behav-
iors in the analysis of the growth of a
crack in, nominally, Mode I.

3. The shear stiffness factor, on the con-
trary, do introduce serious spurious dis-
turbances in the computational results.
This suggests that, until a deeper analysis
might prove the contrary, the best choice
is to take β = 1 which guarantees coax-
iality of traction and separation vectors
and, therefore, frame-indifference of the
fracture power and rotational equilibrium
of cohesive forces.

4. Notwithstanding this, further studies will
be carried out to ascertain the influence of
β in its low-value range (β < 1.5, say).
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