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Abstract: In this study, an extended Rigid-Body-Spring Model (RBSM) considering geometric 

nonlinearity including finite rotation is developed based on an equivalence between the RBSM and 

the reduced integration Timoshenko beam element in order to simulate not only damage 

localization behavior but also large displacement and large rotation collapse behavior of reinforced 

concrete structures. Firstly, an elastic buckling response of a column is simulated by using the 

proposed method. By comparing the simulation result and the exact solution, it is confirmed that the 

proposed model can reproduce the large displacement and large rotation behavior in the elastic 

range. In addition, several numerical simulations of failure behavior of concrete and reinforced 

concrete members are presented. It is also confirmed that the model can simulate localized damage, 

rebar buckling and large rotational collapse behavior. 
 

 

1 INTRODUCTION 

A numerical simulation model that can 

accurately reproduce not only post-peak 

behavior of concrete members including 

damage localization, rebar buckling and so on 

but also collapse behavior of entire concrete 

structures will be an effective tool for 

assessing the restorability and redundancy of 

infrastructure systems subjected to extreme 

loads exceeding design requirements such as 

earthquakes, impact loads and so on. 

In order to accurately reproduce post-peak 

behavior of reinforced concrete members, it is 

necessary to reproduce softening and damage 

localization behavior of concrete under various 

stresses, especially under compression 

including lateral confinement effect. However, 

it is difficult to reproduce the damage 

localization behavior by numerical simulation 

methods based on continuum mechanics such 

as a finite element method. In order to 

overcome them, many researches have been 

conducted, for example, on the application of 

nonlocal constitutive models and so on [1-3]. 

On the other hands, many lattice and 

particle type discretization models have been 

proposed for reproducing fracture and failure 

behvaior on concrete, concrete structures or 

other quasi-brittle material [4-9]. By applying 

a random network model with Voronoi 

tessellation and by introducing non-linear 

constitutive models of the combination of 

normal and shear components between nodes 

or particles, and so on, these models have 

become possible to reproduce the above-

mentioned localization behavior [9]. 
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A Rigid-Body-Spring Model (RBSM) 

proposed by Kawai [10] is a discrete type 

numerical simulation method which is similar 

to the above-mentioned lattice and particle 

type models. Bolander and Saito [11] have 

introduced a random geometry to the RBSM 

mesh using Voronoi tessellation and simple 

reinforcing steel bar model considering the 

nonlinear bond characteristics between 

concrete and rebar by beam and link elements, 

and they have also demonstrated that the 

model can simulate the crack patterns, the 

deformation and the load capacity of concrete 

materials and reinforced concrete structures. 

Nagai et al. [12] have developed a three-

dimensional RBSM and applied to simulations 

of softening and damage localization behavior 

on concrete material. They have shown that 

the model can represent the multi-axial 

compression behaviour including softening 

and damage localization with the simple 

constitutive models. The authors have also 

developed the three-dimensional RBSM and 

constitutive models to quantitatively evaluate 

mechanical response of concrete including 

strain softening and damage localization 

behavior under various stress conditions 

[13,14], and have also demonstrated that the 

model can well simulate cracking and damage 

localization behavior in concrete and 

reinforced concrete structures [15-18]. 

However, since the existing lattice and particle 

type discretization models including the 

RBSM do not consider a geometric 

nonlinearity, they cannot reproduce collapse 

behavior including large displacement and 

large rotation which occur after softening and 

damage localization of concrete. 

In this study, an extended RBSM 

considering geometric nonlinearity including 

finite rotation is developed in order to simulate 

not only softening and damage localization but 

also large displacement and large rotation 

collapse behavior of reinforced concrete 

structures. In addition, through simulations of 

an elastic column, a plain concrete and a 

reinforced concrete beam, validity and 

usefulness of the proposed method are 

demonstrated. 

2 NUMERICAL MODELING 

In this chapter, at first, basic concepts, 

constitutive models, modeling of reinforcing 

steel bar of the existing RBSM proposed by 

the authors [13,14,17], which is the basis of 

the extension model proposed in this study, are 

briefly described. Then, an extended RBSM 

considering geometric non-linearity including 

finite rotation is described. 

2.1 RBSM 

In the RBSM, a total of 6 degrees of 

freedom, 3 for translation and 3 for rotation, 

are set at representative points in the element 

as shown in Fig. 1, and a rigid-body motion is 

assumed for each element. Note that a rotation 

matrix based on the assumption of 

infinitesimal rotation is generally used for the 

description of a rigid-body motion of the 

elements. Springs consisting of one normal 

and two shear components are set at an 

arbitrary point on the interface between two 

rigid elements. Strains of the springs are 

evaluated from the relative displacement in a 

local coordinate system defined by the normal 

and tangential directions to the interface 

between two elements, and stresses of the 

springs are evaluated by non-linear 

constitutive models shown in 2.2. In particular, 

the strains of the springs are assumed by the 

following formula. 

 =  n / h (1a) 

 l =  l / h (1b) 

 m =  m / h (1c) 

where, ,  l and  m are the strains of the 

normal and two shear springs, respectively. In 

addition,  n,  l and  m are relative 

displacements at the evaluation points between 

the two elements in the local coordinate 

system. h is a sum of distances from the 

centroid (or Voronoi generator point) of the 

two elements to the boundary Voronoi face. 

By applying the strain and the displacement 

relationship and the constitutive models to the 

incremental linearized virtual work equation, 

an incremental linearized system equilibrium 
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equation is obtained. In this study, the 

modified Newton-Raphson method is used for 

unbalanced force minimization.  

In this model, a target domain is discretized 

by a random geometry mesh using Voronoi 

diagram as shown in Fig. 1. In addition, it is 

noteworthy that typical RBSM or another 

particle type models have only one evaluation 

point (in other words one integration point) in 

each two elements assembly, whereas the 

proposed model has multiple evaluation points 

[13,17]. Specifically, as shown in Fig. 1, the 

evaluation points are arranged at the centroid 

of the triangle formed of the centroid and the 

vertices of the Voronoi face. With this 

arrangement, the moment resistance between 

two elements is automatically represented 

without rotational springs. 

2.2 Proposed constitutive models of springs 

for concrete material [13,17] 

The constitutive models for the normal and 

shear springs are shown in Fig. 2. The tensile 

model for the normal spring is shown in Fig. 

2a.  t and gf are tensile strength and tensile 

fracture energy. Fig. 2b shows the 

compression model of the normal springs. A 

reversed S-shape curve is assumed. For the 

shear springs, resultant shear stress and 

resultant shear strain are used. The resultant 

shear strain is defined by Eq. (2).  

22

ml  +=  (2) 

Then, resultant shear stress  is calculated 

from the shear stress–strain relation, and the 

shear stresses for each direction ( l and  m) 

are distributed by Eq. (3).  









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m

l

l == ,  (3) 

The envelope of the resultant shear stress–

strain relationship is given in Fig. 2c, Eq. (4) 

and Eq. (5).  
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( )fffsoftf K  1.0,-max max, +=  (5a) 

GK =  (5b) 

( )max0 ),/(min  b+=  (5c) 

where,  f,  f and  max are shear strength, 

strain corresponding to strength and the 

Figure 1: Element configuration 

of the RBSM 

(a) Domain discretization   

using Voronoi diagram 

(b) Two-element assembly  

and springs configuration 

Centroid of 

Voronoi face 

Vertex of Vornoi face 

Evaluation point 

Figure 2: Constitutive model for concrete [13,17] 

(a) Tensile model  

of the normal spring 

(b) Compression model  

of the normal spring 

(c) Response of resultant 

shear stress and strain 

(d) Shear softening coefficient (e) Mohr Coulomb type criterion 
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maximum value of  in loading history, 

respectively. The brackets  in Eq. 5a is 

defined as )0,max( xx = . The resultant shear 

stress elastically increases up to the shear 

strength with the slope of the shear modulus G 

and softening behavior is also assumed. K is 

the shear softening coefficient that is defined 

by Eq. (5). It is assumed that the shear 

softening coefficient K depends upon the stress 

of the normal spring as represented in Eq. (5) 

and Fig. 2d, where, 0, max and  are 

parameters that control a function that 

represents the normal spring stress dependency 

of the shear softening coefficient.  

The Mohr–Coulomb criterion is assumed as 

the failure criteria for the shear spring (Fig. 2e 

and Eq. (6)), where c and  are cohesion and 

the angle of internal friction, respectively. The 

shear strength is assumed to be constant when 

the normal stress is greater than  b, which is 

termed the compression limit value. 


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
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−
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−
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Moreover, it is assumed that the shear stress 

decreases with an increase in crack width at 

the cracked surface, in which tensile softening 

occurs in a normal spring by taking into 

consideration the shear deterioration 

coefficient cr as represented in Eq. (7). Here, 

t and tu are cracking strain and ultimate strain 

in a normal spring, respectively. 

( )








= t

tu

t
cr 








 -exp  (7) 

The stiffness on the unloading path for the 

normal and shear springs are equal to the 

initial elastic modulus E and G. In addition, 

after the stress reaches zero on the unloading 

path, the stress keeps zero until the strain 

reaches the residual strain of the opposite sign. 

The material parameters of the constitutive 

models as described above has been calibrated 

by conducting parametric analyses comparing 

with the test results of uniaxial tension, 

uniaxial compression, hydrostatic compression 

and triaxial compression. The parametric 

analyses include a variety of specimen size, 

shape, a Voronoi cell size (mesh size) and 

concrete strengths. The calibrated parameters 

are shown in Table 1. These parameters are 

recommended for normal strength concrete. 

For the simplification, the material parameters 

are assumed to be uniformly distributed over a 

discretized concrete area. In practical 

Figure 3: Average stress - strain response of the model [13] 
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Elastic modulus Elastic modulus

E  t g f  c c   b

N/mm
2

N/mm
2

N/mm
2

N/mm
2

N/mm
2 degree N/mm

2

1.4E* 0.8f t * 0.5G f * 1.5f c '* -0.015 0.15 0.25 0.35 0.14f c '* 37 f c '* -0.05 -0.02 -0.01 -0.3

Shear spring

 c2 a c1 a c2

Normal spring



Tensile response Compressive response Fracture criterion Softening behavior

* The macroscopic material parameters obtained from the concrete specimens tests

   E* : Young's modulus,  f t * : Tensile strength, G f * : Fracture energy,  f c '* : Compressive strength

 0  max h =G /E

Table 1: Model parameters [13] 
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application, the mesh size is preferable to be 

larger for the sake of reducing computational 

cost. It has been confirmed that the proposed 

model can reasonably simulate the propagation 

of visible cracks and especially the localization 

length of compression failure in concrete in 

the case of that the average mesh size is from 

10 mm to 30 mm [13]. 

The compression model considers neither 

softening behavior nor failure of the normal 

springs. However, compressive failure 

behavior can be simulated with a confinement 

effect by means of a combination of the 

normal spring and shear springs. Fig. 3 show 

examples of the response obtained by the 

model. It can be seen from the figures that the 

proposed model quantitatively reproduces the 

macroscopic softening, damage localization 

and volume change behavior including 

confinement pressure dependency. Although 

not shown here, the proposed model can also 

quantitatively reproduce the length of the 

localized damage zone under uniaxial 

compression [13]. 

2.3 Modeling of reinforcing steel bar 

A reinforcing steel bar is modeled as a 

series of regular beam elements (Fig. 4a) that 

can be freely located within the structure, 

regardless of the concrete mesh design [11]. 

Three translational and three rotational degrees 

of freedom are defined at each beam node. The 

beam elements are attached to the RBSM 

elements by means of zero-size link elements 

that provide a load-transfer mechanism 

between the beam node and the RBSM 

elements. The section partition method called 

the fiber model is applied for the modeling of 

reinforcing steel bar in order to reproduce the 

nonlinear mechanical behavior including 

nonlinear moment-curvature relation. The 

bilinear kinematic hardening model is applied 

for the steel material. The hardening 

coefficient is 1/100. Crack development is 

strongly affected by the bond interaction 

between concrete and reinforcement. The bond 

stress-slip relation is provided in the spring 

parallel to the reinforcement of link element. 

Fig. 4b shows the applied nonlinear bond 

stress – slip relation [17]. 

2.4 Extension to a model considering 

geometric nonlinearity 

Toi [22] clarified that if the stress and strain 

evaluation points of the RBSM are arranged 

on the cross-section of the midpoint between 

two element nodes, the element stiffness 

matrix of the RBSM is identical with that of 

the linear Timoshenko beam element based on 

the reduced integration technique (one-point 

quadrature in this case). In this study, we 

propose the following new model using this 

equivalence. 

Fig. 5 shows an overview of the proposed 

model. In the model, as shown by the blue line 

in the figure, the reduced integration 

Timoshenko beam element considering 

geometric nonlinearity including finite rotation 

[23] which has the Voronoi face as a cross-

section is applied to the mechanical model 

between two elements of the RBSM. Here, 

note that the Voronoi face is always a 

perpendicular bisector of the line connecting 

the two Voronoi generator points due to the 

nature of the Voronoi diagram. That is, by 

arranging the reduced integration Timoshenko 

beam element based on Voronoi diagram as 

Figure 4: Reinforcing steel bar and  

bond interface models 

Beam element 

Link element 

(a) Beam and link element 

(b) Bond steress-slip relation 
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shown in Fig. 5, the network structure satisfies 

the condition of the equivalence proven by Toi 

[22] described above and therefore is identical 

with the RBSM in the range of infinitesimal 

deformation. In other words, the model can 

reproduce large displacement and large 

rotation behavior while maintaining the 

performance of the above-mentioned RBSM. 

In the model, the evaluation points (in other 

words integration points) on the cross-section 

of the linear Timoshenko beam element are 

located at the centroid of the triangle 

consisting of the centroid and vertexes of 

Voronoi face as in the previous RBSM (Fig. 1). 

The normal and two shear strain components 

of Green-Lagrange strain obtained at each 

integration point are assumed to be the normal 

and shear strains of the springs. For the 

calculation of the stress, the same constitutive 

models as the above-mentioned RBSM 

proposed by the authors are assumed.  

Similarly, the reduced integration 

Timoshenko beam elements with finite 

rotation are applied to modeling of reinforcing 

steel bars. The section partition method and 

the bilinear kinematic hardening model are 

also applied.  

3 NUMERICAL RESULTS 

3.1 Post-buckling deformation behavior of 

Elastic Columns 

The proposed model is verified by 

simulating post-bucking behavior of elastic 

column subjected to uniaxial compression. 

Here, we assume that the material is elastic 

and Poisson's ratio is zero. The elastic modulus 

of the normal and shear spring is set to equal 

and the degree of freedom of the RBSM 

elements (or the nodes of Timoshenko beam 

element) are locate to the points of Voronoi 

generator. It should be noted that the RBSM 

can reproduce elastically homogeneous 

response of material with Poisson's ratio of 0 

when the points of Voronoi generator are 

selected as the element degrees of freedom of 

the RBSM and the elastic modulus of the 

Reduced integration 

Timoshenko beam element 

Integration point Voronoi generator 

(Node of bean element) 

Figure 5: Configuration of reduced  

integration Timoshenko beam element 
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normal and the shear spring is equal [24]. Also, 

as an initial imperfection, the elastic modulus 

of the area surrounded by the red line is 

reduced by 1% from that of the other areas.  

The post-buckling deformation behavior 

and the load and displacement relationship are 

shown in Fig. 6. An exact solution is also 

shown in the figures [25]. We can see that the 

proposed model reproduces the exact solution 

with high accuracy. 

3.2 Collapse behavior of concrete column 

subjected to eccentric compression 

The ability to reproduce large displacement 

and large rotation behavior is demonstrated by 

simulating a plain concrete column subjected 

to eccentric compression. Fig. 7 show collapse 

behavior obtained by the proposed model. For 

comparison, simulation results obtained by the 

existing RBSM are shown in the figures. We 

can see from the figures that the existing 

model cannot represent large rotation behavior 

after penetration of crack. On the other hand, 

the proposed model can reproduce large 

rotational behavior until the upper part of the 

column comes in contact with the lower part in 

the collapse process. Note that the proposed 

model cannot reproduce the subsequent 

contact behavior because it does not update the 

initial network. We plan to extend the model 

further in the future. 

3.3 Post-peak behavior of reinforced 

concrete beam 

In this section, in order to demonstrate the 

validity and usefulness of the proposed model, 

simulations of flexural failure type reinforced 

concrete beam tests are presented. Fig. 8 

shows the overview of the test specimen. The 

compressive strength of concrete is 

45.4N/mm2, and the yield strengths of tensile 

rebar, compression rebar and stirrup are 

401N/mm2, 398 N/mm2 and 632 N/mm2, 

respectively. Fig. 9 shows the Voronoi mesh 

configuration of the reinforced concrete beam. 

The average element size is 10mm in the 

section where the bending moment is constant. 

In the shear spans, the element size increases 

gradually towards the end of the beam, up to 

30 mm at the end. 

Fig. 10 shows the load-deflection curves 

and the deformation behavior of the reinforced 

concrete beam. For comparison, simulation 

results by using the existing model is shown in 

Figure 7: Collapse behavior after crack  

penetration of plain concrete 

(b) Deformed shape obtained by 

the proposed model 

(a) Deformed shape obtained by 

the existing model 

Figure 9: Voronoi mesh configuration 

of reinforced concrete beam test 

Figure 8: Test specimen 

Unit:mm 
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the figures. It can be seen from the figures that 

both models accurately reproduce the 

maximum load, the maximum load deflection, 

and the residual load after the first load drop. 

On the other hand, the existing model does not 

reproduce the subsequent second load drop. 

Although the proposed model overestimates 

the second load drop displacement, it 

qualitatively reproduces the second load drop. 

Uncertainty about boundary conditions, such 

as movement of the loading plates in the test, 

may be considered as the cause of 

overestimation, but it is not yet clear and will 

be investigated in detail in the future.  

Fig. 10 also show the deformation behavior 

just after the first load drop and the second 

load drop obtained by simulations (in the case 

of the existing model, the deformation 

behavior at the same deflection point as the 

proposed model). It can be seen that, at the 

time of the first load drop, the compressive 

failure occurs at the beam upper edge in both 

simulations results. At the time of the second 

load drop, in the existing model, unnatural 

element distortion is observed.  

Fig. 11 shows the state of the compression 

rebar after the test. As shown in the figure, 

buckling of the compression rebar was 

observed. Furthermore, compressive failure of 

core concrete was observed in the area where 

the rebars were buckled. That is, the decrease Figure 10: Post-peak behavior of RC beam 

(c) Deformed shape obtained by 

the proposed model 

 = 137.5mm 

 = 25mm 

 = 25mm 

 = 137.5mm 

(b) Deformed shape obtained by 

the existing model 

(a) Load – displacement curves 
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in confinement pressure due to the buckling of 

the rebar caused the second load drop. 

Fig. 10 also show the deformation behavior 

of the compression rebar. Whereas the existing 

model cannot reproduce the buckling of the 

rebar, the proposed model can reproduce it. 

4 CONCLUSIONS 

In this study, an extended RBSM 

considering geometrical nonlinearity including 

finite rotation applying the equivalence of 

RBSM and the reduced integration 

Timoshenko beam element is proposed. The 

validity and usefulness of the proposed model 

are demonstrated through the simulations of 

post-buckling deformation behavior of elastic 

column, collapse behavior of plain concrete 

and post-peak behavior of reinforced concrete 

beam with flexural failure. The proposed 

model can reproduce the exact solution of the 

post-buckling response of the elastic column, 

the large rotation behavior of plain concrete 

after penetration of crack and the post-peak 

behavior of the reinforced concrete beam 

including damage localization, rebar buckling 

and its confinement effect, which cannot be 

reproduced by the existing model. In the future, 

we will conduct further experiments including 

detailed measurements on post-peak behavior 

or collapse behavior of reinforced concrete 

structures and will conduct further verification 

and validation of the model. 
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