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Abstract. The failure probability of engineering structures such as bridges, airframes and MEMS
ought to be 10−6. This is a challenge. For perfectly brittle and ductile materials obeying the Weibull
or Gaussian failure probability distribution functions (pdf) with the same coefficient of variation,
the distances from the mean strength to 10-6 differ by about 2:1. For quasibrittle or architectured
materials such as concrete, composites, tough ceramics, rocks, ice, foams, bone or nacre, this distance
can be anywhere in-between. Hence, a new theory is needed. The lecture begins with a review of the
recent formulation of Gauss-Weibull statistics derived from analytical nano-macro scale transitions
and equality of probability and frequency of interatomic bond ruptures governed by activation energy.
Extensions to the lifetime pdf based on subcritical crack growth is pointed out. Then, motivated by the
nanoscale imbricated lamellar architecture of nacre, a new probability model with alternating series
and parallel links, resembling a diagonally-pulled fishnet, has been developed. After the weakest-
link and fiber-bundle models, it is the third model tractable analytically. It allows for a continuous
transition between Gaussian and Weibull distributions, and is strongly size-dependent. The original
fishnet model for strength of fishnet with brittle links is extended to quasibrittle links and is handled
by order statistics. The size effect on the mean fishnet strength is a new kind of Type 1 size effect.
It is found to consist of a series of intermediate asymptotes of decreasing slope and can be used
for calibrating the fishnet distribution. Finally it is observed that random particulate materials such a
concrete may follow the fishnet statistics in the low probability range. Comparisons with experimental
histograms and size-effect tests support the theory.

This plenary conference lecture reviews recent studies at Northwestern University dealing with
materials whose microstructure has a nacreous lamellar architecture. It focusses on the fishnet sta-
tistical model which, after the weakest-link and fiber-bundle models, became two years ago the third
failure probability model tractable analytically. The lecture is based on a recent apercu of the theory
that has just been published as an inaugural paper in the Proceedings of Royal Society A [1], and so
only a succinct account of the theory is presented here.
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1 INTRODUCTION
The amazingly robust mechanical properties

of nacre-like imbricated (staggered) lamellar
structures have been extensively studied over
the past two decades [2–9, e.g.]. Good under-
standing of the deterministic toughening mech-
anism and of the critical role of the hierarchi-
cal fine-scale structure in enhancing material
toughness has been achieved, and fostered the
advent of novel bioinspired materials. These
studies, however, were mostly deterministic and
provided only the mean behavior. For nacreous
material architectures, no probability distribu-
tion of strength up to the far left fail existed until
the fishnet idea came up two years ago.

Capturing the far-out tail of failure probabil-
ity 10−6 is the ultimate goal, whose main ideas
first developed in detail in [10], compactly pre-
sented in [11], and recently broadly reviewed
in [1]. Brittle material constituents were consid-
ered in the initial work. Subsequently, the fail-
ure probability of nacreous materials with pro-
gressively softening constituents has been ana-
lyzed [12]. Inferring the tail strength distribu-
tion via size effect tests has recently been stud-
ied and explained extensively in [13].

Designing structures using nacre-mimetic
materials typically requires knowing their prob-
ability strength distribution up to the tail with
probability close to Pf = 10−6 per lifetime,
which is generally the level of safety required
for engineering structures such as bridges, air-
craft, MEMS, etc [14,15]. It guarantees the fail-
ure risks of engineering structures to be four or-
ders magnitude lower than other risks that peo-
ple inevitably take (e.g., car driving), and leads
to be of about the same level of risk as being
killed, e.g., by a lightning or a falling tree. Such
low tail probabilities can hardly be determined
by histogram testing of millions of specimens or
structures. Therefore, one needs a realistic and
accurate mathematical model for the strength
distribution, to be verified only indirectly, by
other predictions depending on the tail, among
which the size effect is most important.

Here, a diagonally pulled fishnet is intro-
duced for the statistical modeling, providing a

sufficiently realistic simplification of the con-
nectivity of nacre’s microstructure. Same as
the weakest-link model, the failure probabil-
ity of fishnet, Pf , is obtained by calculating its
counterpart—the survival probability, 1 − Pf .
But, in contrast to the weakest-link model, the
fishnet survival probability receives additional
(additive) contributions from failure occurring
when one, two, three, ... fishnet links have
failed (depending on structure shape) before the
maximum load. These additional survival prob-
abilities greatly enhance the structure strength
for Pf < 10−6, compared to the the weakest-
link model. They also provide a gradual tran-
sition from the weakest link model towards the
fiber bundle model.

Figure 1: a) Nacre inside a nautilus shell; b)
Electron microscopy image of a fractured surface
of nacre (both (a) and (b) are from Wikipedia;
https://en.wikipedia.org/wiki/Nacre); c) Simplified fish-
net structure
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The analytical predictions of failure proba-
bility are here verified by million Monte-Carlo
simulations for each of many loading cases.
Monte Carlo simulations of nacreous structures
have previously been conducted with the ran-
dom fuse model (RFM) [5, 16], in which the
brittle bonds in the structure are simplified as a
lattice of resisters with random burnout thresh-
olds. The RFM simulates the gradual fail-
ure of a resister network under increasing volt-
age. This is partly similar to the failure process
of quasibrittle elastic material under controlled
uniaxial load.

To calculate the maximum loads of the sys-
tem of fishnet links, a simple finite element
(FE) program for a pin-jointed truss is formu-
lated (in MatLab). For each of many shapes
and sizes of the fishnet, the maximum loads
are calculated for about 1 million input samples
of randomly generated strengths of the links,
based on the assumption that the link strength
follows the grafted Gauss-Weibull distribution
(see [15]), previously derived from Kramers’
transition rate theory for activation energy con-
trolled breaks of interatomic bonds, and by
asymptotic analysis of probability tails in scale
transitions from nano to macro.. Running each
set of about 1 million FE solutions takes a few
days. With such a large number of random
samples, the resulting strength histograms be-
come visually indistinguishable from the theo-
retical cumulative probability density function
(cdf) of failure probability Pf , derived analyti-
cally in [10].

For the purpose of statistical analysis, the
longitudinal load transmission must be realis-
tically simplified. Almost no load gets trans-
mitted between the ends of adjacent lamellae in
one row, and virtually all the load gets transmit-
ted by shear resistance of ultra-thin biopolymer
layers within the overlap of parallel lamellae.
The links of the lamellae in adjacent rows many
be imagined as the lines connecting the lamel-
lae centroids.

2 FAILURE PROBABILITY OF FISH-
NET MODEL

We consider the case of load control, for
which the failure load is the maximum load,
σmax. We analyze rectangular fishnets with k
rows and n columns, containing N = k × n
links (Fig. 1.c), loaded uniformly by uniaxial
stress σ imposed at the ends of rows. Let Pf (σ)
be the failure probability of fishnet loaded by σ,
and X(σ) the total number of links failed at the
end of experiment under constant load σ. This
means that X(σ) is measured when no more
damages occur.
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Figure 2: a) Cumulative distribution function (cdf) of fail-
ure for a single link with mean ft = 10.016 MPa and
CoV = 7.8%); b) Comparison of Pf (in Weibull scale) be-
tween the finite weakest-link model and the fishnet model
with first 2 terms in the expansion of Eq. 1

The failed links may be contiguous or scat-
tered discontinuously. The events {X(σ) =
r}, r = 1, 2, 3, ... are mutually exclusive (or
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disjoint). So, to obtain the survival probability
of the whole fishnet, the corresponding survival
probabilities, PSr(σ), must be summed;

1−Pf (σ) = PS0(σ) + PS1(σ) + PS2(σ) + · · ·
(1)

+ Prob(X(σ) ≥ k and structure still safe)
(2)

where Pf (σ) = Prob(σmax ≤ σ); σmax =
nominal strength of structure; and PSr(σ) =
Prob(X(σ) = r), r = 0, 1, 2, ....

To get a better upper bound on structure
strnegth, we now include the second term in
Eq.(1), i.e., 1−Pf (σ) = PS0(σ)+PS1(σ) where
σ = average longitudinal stress in the cross sec-
tion, the same in every section. For the sake
of simplicity, we further assume that: 1) the
stress redistribution affects only a finite num-
ber, ν1, of links in a finite neighborhood of the
first failed link in which λi > 1.1, and 2) factor
λi is treated as constant, λi = η

(1)
a (> 1) within

this neighborhood, taken either as the weighted
average of all redistribution factors (to get the
best estimate), or as the maximum of these fac-
tors (to preserve an upper bound on Pf ). With
this simplification,

PS1(σ) = NP1(σ)[1−P1(σ)]
N−ν1−1[1−P1(η

(1)
a σ)]ν1

(3)
Here N means that failure can start in any one
of the N links, which gives N mutually exclu-
sive cases. The two bracketed terms mean that
the failure of one of the N links must occur
jointly with the survival of: (i) each of the re-
maining (N − ν1 − 1) links with stress σ, and
of (ii) each of the remaining ν1 links with re-
distributed stress η(1)a . Analysis shows that the
second term of fishnet statistics PS1 increases
the terminal slope of strength probability distri-
bution in Weibull scale by the factor of exactly
2.

Particularly important are the implications
for structural safety. In Fig.1.c, the horizontal
line for Pf = 10−6 marks the maximum failure
probability that is tolerable for engineering de-
sign. In this typical case, for constant N , the
strength for Pf = 10−6 is seen to increase by

10.5% when passing from the weakest-link fail-
ures to fishnet failures, while, at fixed strength,
the Pf is seen to decrease about 25-times. The
Pf decrease depends on the fishnet configura-
tions and on P1. but is generally more than 10-
times greater. This is an enormous safety ad-
vantage of the imbricated lamellar microstruc-
ture, which comes in addition to the advantages
for mean strength previously identified by de-
terministic studies.

Further improvement can be obtained by in-
cluding the third term of the sum in Eq.(1).
This term may be split into two parts, PS2 =
PS21 + PS22 , which are mutually exclusive, and
thus additive. They represent the survival prob-
abilities when the next failed link is, or is not,
adjacent to the previously failed link. For de-
tailed derivation, see [10].

3 MONTE CARLO FAILURE SIMULA-
TIONS

A rectangular fishnet truss, with k rows and
n columns of identical links, has been simu-
lated by a finite element program (in MatLab).
For computational stability, the fishnet is loaded
under displacement control, by incrementing
equal longitudinal displacements u0 at the right
boundary. At the left boundary, the horizontal
displacement is zero. The boundary nodes slide
freely in the transverse direction.
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Figure 3: Normalized histogram of 106 Monte Carlo re-
alizations (σmax) compared with the probability density
functions of the weakest-link, 2-term fishnet and 3-term
fishnet models converted into cumulative probability dis-
tribution and plotted on the Weibull paper. ft = 9.87
MPa is the mean strength of one link and CoV = 9.87%.
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According to the arguments in [15, 17–19],
based on nano-mechanics and scale transitions,
the cumulative distribution function (cdf) of
strength of each link, P1(σ), is assumed to
be a Gaussian (or normal) distribution with a
Weibull tail of exponent m grafted on the left
at failure probability Pg (for σ → 0, the cdf
∝ σm). The strength of each of N = k × n
links is generated randomly according to P1(σ).
The autocorrelation length of the link strength
field is assumed to be equal to the link size and,
therefore, is not considered.

To verify the analytical two- or three-term
statistics, respectively, the cases in which more
than one, or two, links failed prior to the max-
imum load have been deleted from the set of
about 1 million simulations of a fishnet having
16 × 32 links, CoV = 0.987 of P1, and grafting
point at Pg = 0.09. This is equivalent to omit-
ting in Eq.(1) all the terms except the first two
or three, respectively.

The remaining histograms (σ(1)
max and σ(2)

max)
are compared with the analytical cdf in Fig.3b
(Fig.3a shows, for all simulations of σmax, only
the histogram). Despite simplifications, such
as using a uniform redistribution ratio η and
not distinguishing link failures at the boundary
from those in the interior, the agreement is ex-
cellent. This validates the analytical solution.

Fig.3 shows, for comparison, also the his-
tograms of all the Monte Carlo simulations,
which correspond to the complete sum in
Eq.(1). Note that, in this case, the three-term
model, and even the two-term model, give a sat-
isfactory estimate of fishnet cdf.

Shape Effect
Consider now the effect of the fishnet shape,

or aspect ratio k/n. Fig. 4 shows the histograms
obtained by random simulations (again about a
million each) for fishnets with N = 256 links
when their dimensions k × n are varied from
128×2, which represents the weakest-link chain
(or series coupling), to 2 × 128, and is equiv-
alent to the fiber bundle (or parallel coupling,
with mechanics-based load sharing, i.e., equal
extensions of all fibers). Obviously, the shape

effect is very strong. However, fishnets with
k � n and rigid-body boundary displacements
are usually not relevant to practical situations.

4 SIZE EFFECT
Fishnet statistics shows a different size ef-

fect on the median nominal strength of geomet-
rically similar rectangular fishnets. To derive
the size effect relation, the geometric scaling of
a rectangular fishnet has been split into trans-
verse and longitudinal scalings: transverse scal-
ing increases the width (orthogonal to loading
direction) while fixing its length; and longitudi-
nal scaling increases the length (parallel to load-
ing direction) while keeping its width constant.
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Figure 4: Change of failure probability of a fishnet pulled
horizontally caused by varying the aspect ratio k/n grad-
ually from 1 : N to N : 1 at constant number of links
(Weibull scale): a) Monte Carlo simulations showing the
transition of Pf as the aspect ratio of fishnet is changed
(N = 256); b) The same data re-plotted on Weibull pa-
per. ft = 9.87 MPa is the mean strength of one link and
CoV=9.87%.
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Proportional combination of the effect of
both transverse and longitudinal scaling then
yields the two-dimensional geometric scaling
and its size effect:

lnσ0.5 = X =
ln ln 2− y0 − lnD

m0(1 + c lnD)
+ x0 (4)

Detailed derivation can be found in [13].
Eq. 4 is the median size effect relation that de-
scribes the relation between the logarithms of
the median strength X = lnσ and the dimen-
sionless size, D. There are four parameters in
this relation; they are: x0, y0, c and m0, where
(x0, y0) is the coordinate of the point of rota-
tion, Q, under transverse scaling; c is the rate of
slope increase for histograms under transverse
scaling; m0 is the apparent Weibull modulus for
the reference size fishnet. Note that m0 is gen-
erally not the same as the Weibull modulus of
the link strength distribution, and depends on
the shape of the chosen reference size fishnet.

With Eq. (4), one could infer the strength dis-
tribution from the median size effect obtained
from experiments or Monte Carlo simulations.
Compared to the direct estimation of the his-
togram, which in general would require tens
of thousands of test repetitions for Pf > 10−3

(and, in theory, 107 repetitions for Pf > 10−6),

the size effect method requires only a few (typ-
ically not more than 6) tests for each of three
or four structure sizes, to obtain a tight upper
bound on the failure probability distribution.

Fig. 5 shows the median size effect curves
using the median strengths of the samples ob-
tained from the histograms of the Monte Carlo
simulations. The optimum fit of the data by
Eq. 4 is also shown for comparison. The size
effect relation is monotonically decreasing and
has a convex curvature, which is a general fea-
ture of the type-1 size effect [15, 20, 21].

Figure 5: Optimum fit of the size effect relation (lnσ0.5
vs lnD) using the sample median strength obtained from
Monte Carlo simulations. The data points are the sample
median strengths for the 4 typical sizes and the curve is
the optimum fit.

Figure 6: Shear failure of randomized RC beams under 4-point loading. The darker the color, the stronger the element (in
terms of strength and stiffness).

5 RAMIFICATIONS TO CONCRETE,
RC BEAM SHEAR, MASONRY AND
OTHER QUASIBRITTLE MATERIALS

The microscale connectivity of particulate
quasibrittle materials such as concrete provide
provides complicated pathways for force trans-

mission which include alternating lateral trans-
fer of longitudinal loads. This observation sug-
gests that these materials may exhibit partial
fishnet connectivity in their load-transfer path,
and thus the weakest link action may be par-
tially enriched by fishnet action to some extent.
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It surely does not occur in concrete and tough
(or toughened) ceramics at failure probability
level P > 0.005 because Weibull’s (1939) his-
tograms testing of about 10,000 specimens of
concrete demonstrated that, in Weibull scale,
a long lower tail of the histogram is perfectly
straight. But that is so only for Pf > 0.005.

Nobody knows how the histogram for con-
crete or tough ceramics would look for the 31

2

orders of magnitude below. It could be that a
fishnet type deviation comes into play. Proba-
bly the only way to answer this question would
be by size effect testing of specimens of positive
geometry. If so, there could be a safety gain at
10−6, compared to an Weibullian extrapolation
by the weakest link model.
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Figure 7: Histogram of nominal strengths of RC beams
under shear failure (4-point loading). Sample size =
1000.

In particular, for various quasibrittle materi-
als, Eq.(3) could be applied by determining the
equivalent values of N , ν and η(1)a , where N =
equivalent number of links, ν = equivalent size
of stress redistribution zone and η(1)a = equiva-
lent stress redistribution ratio.

Fig.6 shows one random realization of the

strength and modulus of reinforced concrete
(RC) beam under four-point shear loading. Mi-
croplane model M7 is here used for the constitu-
tive law of concrete, in which Young’s modulus
and scaling parameter k1 are randomized based
on a Gauss-Weibull grafted distribution. The
histogram of the simulations (normalized to cdf
in Weibull scale) is shown in Fig.7. It is clear
that the general pattern of strength distribution
is very similar to that shown in Fig.3 for the
fishnet. The slope of the curve at the lower tail
has increased slightly more than 3 times com-
pared to the upper tail. Therefore, a 3-term fish-
net model could be enough to capture the fail-
ure probability (i.e. strength distribution) of the
beam.

Finally note that the microstructures of nacre
and of the brick-and-mortat masonry are quite
similar. Thus the fishnet statistics could also be
applied to masonry, which bears the same brick-
and-mortar structure as nacre.

6 CONCLUSIONS
1. The failure statistics of nacre-like mate-

rial with imbricated (or staggered) lamel-
lar microstructure under longitudinal ten-
sion can be approximately modeled by
square or rectangular fishnets pulled di-
agonally.

2. The probability distribution of fishnet
strength, including the far-out left tail,
can be calculated from the survival prob-
ability representing a sum of those corre-
sponding to the failure of zero, one, two,
three, etc., links prior to the overall fail-
ure. The series converges rapidly—the
faster the greater the coefficient of vari-
ation (CoV) of scatter of each link.

3. The terms of this series represent vari-
ous combinations of joint probabilities of
survival and additive probabilities of fail-
ure for disjoint events. Near the zone of
failed links, the link survival probabilities
must be modified according to the me-
chanical stress redistribution due to pre-
viously failed links.

4. There is no fixed-size representative vol-
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ume element of material (RVE), in con-
trast to the weakest-link model for Type
1 quasibrittle failures of particulate mate-
rials. The size of the zone of failed links
at maximum load grows with the CoV of
link strength.

5. The size effect law is similar, though not
the same, as in quasibrittle Type 1 fi-
nite weakest-link model. The longitu-
dinal scaling leads to a vertical upward
shift of the distribution in the Weibull
scale, while the transverse scaling leads
to a counter-clockwise rotation of the dis-
tribution about a fixed point located be-
low the median. Combination of scal-
ings in two separate directions gives the
size effect relation. The nominal strength
of fishnet at the same width-to-length ra-
tio decreases significantly with the fish-
net size. At the Failure probability 10−6,
a reverse size effect on structure strength
is possible.

6. The fishnet shape, i.e., the width-to-
length aspect ratio, has a major effect
on the probability distribution of strength,
which contrasts with to finite weakest-
link model for Type 1. The greater this
ratio, the higher is the safety margin, i.e.,
the greater is the strength at the failure
probability level Pf = 10−6. As the as-
pect ratio is increased from 0 to ∞, the
fishnet gradually transits for the weakest-
link chain to the fiber bundle as the limit
cases.

7. The fishnet model is verified by about a
million Monte Carlo simulations of fail-
ure for each of many loading cases. The
simulations were run for each of many
different aspect ratios, link strength CoVs
and fishnet sizes.

8. There now exist three basic, analyti-
cally tractable, statistical models for the
strength of materials and structures:

• the fiber bundle model (parallel cou-
pling),

• the weakest-link chain model (series
coupling), and
• the fishnet model (mixed, or imbri-

cated coupling)

The third one includes the first two as the
limit cases.

9. A similar steepening of the distribution
slope at the lower end of Weibull scale
plot can also be achieved by the chain-
of-bundles model, but only if a con-
venient intuitive non-mechanical load-
sharing rule is empirically postulated for
each bundle, and if the specimen length
is subdivided by chosen cross sections
into statistically independent segments of
suitable length, corresponding to each
bundle. However, the imbricated (stag-
gered) lamellar connectivity cannot be
captured.

10. At present, the experimental results, for
any material, do note reveal the strength
distribution for failure probability less
than 0.005, which is 31

2
orders of magni-

tude above what is needed, i.e., 10−6. It is
likely that the fishnet statistics might be at
least partially applicable to other quasib-
rittle materials such as concrete or brittle
ceramics. As for masonry, its structures
is similar to nacre and so it is likely to
follow the fishnet statistics. Monte Carlo
simulations of shear failure of RC beams
also suggest partial fishnet action in the
lower probability tail.
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Zdeněk P. Bažant and Wen Luo
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