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Abstract. The fracture process in concrete is a collaborative process among the micro-cracks
originating ahead of the crack tip under the applied load, and influenced by the constituent
heterogeneity. To understand this interactive phenomenon, statistical physics-based theories
are very applicable, and by treating each micro-crack as an energy source, the whole process can
be remodeled into a phase space. This study aims to investigate the sparsity of micro-cracking
in concrete subjected to fatigue and monotonic loadings by utilizing the fractal signatures of
the phase space constructed from the acoustic emission parameters. The correlation dimension
of the acoustic emission energy time series generated from concrete for both types of loading
is obtained separately using the Grasserberger-Proccacia algorithm. The results indicate that
concrete under fatigue has a lower correlation dimension than the monotonic case, explaining
that fatigue is a process where one crack causes failure, unlike the monotonic case, where it
is a cooperative phenomenon. The correlation dimension can also capture the influence of
cycling frequency on the fatigue life, showing an increment with the increase in frequency.
The efficiency of this method can be enhanced by choosing the appropriate dimension of the
underlying phase space of the time series and, therefore, can preferably employed to estimate
the health of a real-life structure over conventional methods like event source localization.

1 INTRODUCTION
On a material level, concrete is

heterogeneous, and it is not only due to the
wide variety of ingredients in its mixture
design, but also due to the presence of
the unavoidable flaws like voids, pores and
micro-cracks. When subjected to load,
several other micro-cracks form ahead of
the crack tip [1], and it is the inherent
heterogeneity that do not allow them to
localize and propagate easily [2] through
several resistive processes known as the
toughening mechanisms [3]. This forms a
cloud of micro-cracks in front of the crack

tip known as the fracture process zone
(FPZ) and it is the FPZ which increases
the resilience of the material, that is evident
from the post-peak softening behavior in
the tensile response of concrete [4]. Due
to the toughening mechanisms such as
crack branching and crack deflection [5],
the most probable method to cause global
failure is to form a macro-crack by the
coalescence of several micro-cracks, thus
making concrete fracture an interactive
phenomenon. Therefore, it is very important
to develop an in depth understanding of
the material behavior, in order to utilize
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the post-peak response to the fullest while
designing real life structures. To achieve this,
the material must be monitored from within
and that too in real time, hence acoustic
emission (AE) sensing technique is preferred
[6], and as concrete exhibits a pronounced
softening response, adequate number of AE
signals are received prior to the complete
failure [7]. All these traits allows concrete
to be classified as a quasi-brittle material.
However, these properties are dependent
upon the size of the specimen [2] and also
upon the nature of the sustained loading,
because failure of concrete is an interplay
between the heterogeneity and the applied
load. Hence, the influence of the applied
loading is very important [8] in the context
of the softening response and the precursory
AE signals.

For this study, the effect of fatigue loading
on the formation of a cloud of micro-cracks
ahead of the crack tip, similar to what
occurs under conventional monotonic loading
is examined. The main reason to investigate
the influence of fatigue, apart from it being
cyclic in nature is the fact that, it causes
sub-critical failure. The softening behavior
of concrete is observed only when the peak
strength or the critical load is exceeded, but
the sub-critical failure due to fatigue happens
suddenly and that too before reaching the
peak load, which makes it an extremely
severe class of loading. In fact, creep is also
a sub-critical type of failure, but is not as
severe as fatigue, because the former takes
a significantly longer duration and exhibit
enough visual indicators before failure, unlike
fatigue [9]. Some studies have been carried
out using AE in order to look into the
micro-cracking features of concrete fracture
under fatigue, and it was reported that the
micro-cracking density is significantly low as
compared to that under monotonic loading
[10]. Considering the principal attribute
of concrete fracture, that is the interaction
among micro-cracks, fundamental principles
of statistical physics are the most suitable

[11, 12] to look into the process in a greater
detail.

Usually to study the development of
the FPZ, the position of the micro-cracks
are precisely obtained from AE localization
techniques, but this method is very time
consuming [13]. Considering the very first
aspect of statistical physics, namely the
interactions within a many bodies system
[14], where the energy of the system depends
upon the position vectors of the individual
bodies, a phase space is constructed in order
to give a geometric representation of the
mechanical state of the system.

Utilizing the fractal nature of the
micro-crack positions and dimensions inside
the FPZ [15], and the power-law distribution
of AE energy time series, an equivalent phase
space is constructed from the AE energies
to study the sparsity of micro-cracking
within notched concrete beams under
three point bending due to fatigue and
monotonic loadings respectively. Apart
from the theoretical considerations one
practical motivation is that, this method
is fairly applicable even when events are not
captured, as multiple number of sensors are
required to get the locations, but the AE
energies can be obtained from one sensor as
well.

2 METHODOLOGY
It is now understood that the fracture

process of concrete is a collective
phenomenon [11], which at any point of time
is dependent upon the concentration of the
micro-cracks formed within the material [2]
and their mutual interactions. Therefore, in
order to study the fracturing phenomenon,
precise temporal and spatial description
of the material bulk is required, which is
successfully obtained with the aid of AE,
but the computational cost of the process
of source localization is very high [13]. In
order to overcome this limitation, theories
that specialize in many body interactions are
required, and most of such theories have their
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core within the field of statistical physics
[7]. The state of any mechanical system
is determined from the spatial coordinates
that may or may not change with respect to
time [14]. However, these systems can also
be uniquely and accurately characterized
using other features as well that evolve
with time and the new describing coordinate
system formed is known as the phase space.
In the phase space, at any time instant,
the mechanical state is represented using
a single point and the evolution of the
system is automatically obtained from the
trajectory of the point. Since the trajectory
is a geometric feature, concept of fractality
can be used to describe it. In fact, this
procedure is used in an engineering sense in
the area of structural dynamics [16] to study
multi-degree of freedom systems.

In the present context, micro-cracks
formed during the fracture process are
treated as the quantities of interest and the
phase space is constructed using the AE
energies obtained from micro-cracks, and its
fractal dimension is shown to be equivalent to
that of the space obtained from actual event
source localization [13].

It is known very fairly that the position
of the micro-crack centroids are fractal in
nature with respect to the specimen size
s, and the fractality is measured in terms
of a coefficient known as the correlation
dimension D, which is a type of fractal
dimension. The expression of this fractal
distribution of given as [13]:

N(s) ∼ sD (1)

where, N(s) is the number of micro-cracks
in a specimen whose largest geometric
dimension is s. Now, using the ball covering
method to calculate the fractal dimension,
the following power-law type relation is
obtained:

N(d) ∼ d−D (2)

with d as the radius of the ball and N(d)

is the number of balls of radius d required to
cover the entire crack network. This inverse
power-law relationship can be explained from
the Figure 1. When the radius is d the
number of balls required are four, and once
the radius of the covering balls are halved as
in Figure 1b, the number of balls required to
cover the same area is squared to sixteen.

d

(a) Original radius

d
2

(b) Radius halved

Figure 1: Ball covering method

Now, combining Equation 1 with
Equation 2 retrieves the original definition
of fractals, which is:

N(d) ∼
(s
d

)D

(3)

From the fractal theories of fragmentation
and particle size distributions [15], the
cumulative number of micro-cracks of linear
size L is a power-law distribution with
exponent γ [13] and is give as:

N(≥ L) ∼ L−γ (4)

where, N(≥ L) is the number of
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micro-cracks with dimension greater than or
equal to L. Assuming that the radius of the
balls required is a power-law function of the
linear dimension L with exponent x as:

d(L) ∼ Lx (5)

and due to the dependence of the radius d
on the crack size L, Equation 3 is rewritten
as:

N(≥ L) ∼
(

s

d(L)

)D

∼
( s

Lx

)D

(6)

For a fixed specimen size s, the preceding
equation is analogous to Equation 5, which
gives the relationship between all the
exponents [13] as:

x =
γ

D
(7)

From the self-similar nature of
micro-crack distribution within the FPZ
[17], the exponent x relating the distance
between two cracks of almost same size
is a constant [13]. Therefore, making the
power-law exponent γ proportional to the
correlation dimension D as:

D ∝ γ (8)

Since the energies of the AE are directly
proportional to the geometric dimension of
the source, this means:

E ∝ L (9)

where E is the energy of an AE event.
Thus from Equations 7 and 9 it is evident
that measuring the fractal dimension of the
physical event positions are equivalent to
that of measuring the fractal dimension of
the AE energy time series.

To find out the fractal dimension of a time
series, the Grasserberger-Proccacia (GP) [18]
algorithm shall be utilized. The procedure as
follows. Considering a time series X as:

X = {x1, x2, x3, · · · , xn} (10)

The sequence given in Equation 10
containing n terms is embedded into a phase
space of dimension m. To do so, the series
in Equation 10 divided by sliding windows of
size m, for example a two dimensional case
is shown in Figure 2 for m = 2 and n = 5:

(x1, t1)

(x2, t2)

(x3, t3)

(x4, t4)

(x5, t5)

t

x(t)

(a) Original space

X1 =

[
x1

x2

]

[
x2

x3

]
= X2

X4 =

[
x4

x5

]

X3 =

[
x3

x4

]

x(t)

x(t+ 1)

(b) Phase space

Figure 2: Phase space construction

In general, for higher values of m, the
vectors from Equation 10 are represented
by taking the first m points, and then
progressing by one vector each time as in
Equation 11, producing a total of n−m+ 1
vectors. The vectors X1, X2, . . . , Xn−m+1

represent the points in the phase space.
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X =


X1 : (x1, x2, · · · , xm)

X2 : (x2, x3, · · · , xm+1)
...
Xn−m+1 : (xn−m+1, xn−m+2, · · · , xn)

(11)
By reforming the time series in Equation

10 like Figure 2b and Equation 11, the
correlation cumulative function C(d) over
nC2 = n(n−1)

2
micro-cracks is evaluated as

[19]:

C(d) =
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

H (d− |Xi −Xj|)

(12)
where, H(u) is the Heavside step function,

and is used to count the number of pairs of
points, whose euclidean distance is less than
or equal to d. It is defined as:

H(u) =

{
1, u ≥ 0

0, u < 0
(13)

Rewriting Equation 12 within proper
range of d and m, for n number of cracks
as a power-law:

C(d) ∝ dD (14)

where, D is same as that in Equation
1 and the d is the representative of the
hypothetical balls similar to that in Equation
2.

3 EXPERIMENTAL PROTOCOL
Notched plain concrete beams were

prepared from a mixture of water, cement,
fine aggregates and coarse aggregates, at
a proportion of 1:0.54:1.08:1.62:1.62 and
this resultant mixture produced cubes of
dimension 150mm × 150mm × 150mm,
whose 28 days compressive strength were
approximately 40MPa [20]. The mechanical
tests were performed on a servo hydraulic
universal testing machine of capacity 35kN ,

manufactured by BISS (M/s ITW INDIA).
The crack mouth opening displacement
(CMOD) was measured through a clip gauge,
whose working range was between ±0.25mm.
The monotonic tests were performed with the
CMOD as the control parameter at a rate
of 10−3mm/s, while the constant amplitude
cyclic tests were performed with the vertical
actuator load as the control parameter at a
fixed frequency. The in-plane geometry of
the notched beams is shown in Figure 3. The
supported length of the beams was 600mm,
the depth of the beam was 150mm. The
out-of plane thickness was set to be 50mm
and the notch depth was fixed at 30mm for
all the specimens.
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Figure 3: Specimen geometry with AE sensor
positions (All dimensions are in mm)

Multiple specimens were tested for the
monotonic case [20], out of which one
representative test is shown in Figure 4 and
the average peak strength was found out to
be 3.35kN .
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Figure 4: Monotonically loaded specimen

Figure 4 also shows in red the AE
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energies emitted from within the specimen
when loaded monotonically. These AE
signals were captured using six R6D
type piezoelectric sensors, manufactured by
MISTRAS Physical Acoustics, mounted on
each surface with just adequate amount of
silicon grease and later an outer plastic tape
was wound in order to prevent the sensors
from dislocating. The green filled blue circles
in Figure 3 represent the sensors, with the
dashed circles indicating the rear face of the
beam and the rest are on the front.

0 450 900
0

1

2

Time (s)

Lo
ad

(k
N
)

0
50

10
0

15
0

A
E

En
er

gy
(a
J
)

(a) 0.5Hz Fatigue test
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(b) 2Hz Fatigue test

Figure 5: Cyclically loaded specimens

For the fatigue loading, the specimens
were sinusoidally cycled below their 80% of
their static strength, which is expected to
be 3.35kN , and the lower limit was set at
0.25kN . Effect of two cycling frequencies,
namely 0.5Hz and 2Hz were studied on

separate specimens. Even in these cases
multiple specimens were tested, but only the
representative cases, one of each are shown
in Figure 5a and 5b.

Table 1: Summary of Experimental results [20]

Test CMODmax Nf Pmax

type (mm) ⊗ (kN)
Monotonic 1.1 ⊗ 3.35

0.5Hz fatigue 0.08 1082 0.8× 3.35
2Hz fatigue 0.2 6861 0.8× 3.35

Table 1 reports the mean values of
important parameters such as, the maximum
load (Pmax) sustained by the specimen, the
CMOD at failure (CMODmax) and the
number of cycles to failure when subjected to
fatigue (Nf ). Now, based on the AE energies
captured by the sensors, a time series is
constructed analogous to Equation 10 and
the phase space is constructed in the form
of Equation 11 by selecting an appropriate
value of m.

4 RESULTS AND DISCUSSIONS
For the physical phase space constructed

from the actual AE event locations, the value
of m is fixed at 3.

101 102

1

d

C
(d
) Monotonic

2Hz Fatigue
0.5Hz Fatigue

D1 = 0.6
D2 = 0.5
D3 = 0.45

Figure 6: Correlation dimensions obtained from AE
event locations

Using the GP algorithm, the correlation
function as in Equation 12, is plotted in
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Figure 6. Here the value of m cannot exceed
3, because the event positions are obtained
in a three dimensional real euclidean space.
In order to check the validity of the discussed
method involving the AE energy time series,
the value of m is selected to be 3 [19]. The
correlation function of Equation 12 is shown
in Figure 7.
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D1 = 0.77
D2 = 0.4
D3 = 0.26

Figure 7: Correlation dimensions obtained from AE
energy

Figures 6 and 7 reveal that the fractal
dimension in the case monotonic (D1), 2Hz
fatigue loading (D2) and at last the 0.5Hz
fatigue loading (D3) respectively follow the
order:

D1 > D2 > D3 (15)

The increase in the fractal dimension for
the monotonic case in the original physical
space gets reflected in the alternate space
constructed from the AE energy, justifying
the relations obtained in Equations 8 and 9
respectively.

Although the results are quite convincing,
the computational efficiency of the discussed
method still remains the same, as the phase
space dimension m is same for both the cases.
To improve the efficiency, a larger value of m
can be selected in order to reduce the number
of vectors X1, X2, . . . , Xn−m+1. Since the
space constructed from the AE energies is

not a physical space, there is no restriction
on the value of m, and upon increasing the
value of m the value of D usually increases
as shown:

0 3 6 9 12 15
0

1

2

3

m
D

Monotonic
2Hz Fatigue
0.5Hz Fatigue

Figure 8: Plot of phase space dimension and fractal
dimension

As shown in Figure 8, the fractal
dimension for the monotonic case is the
highest one and then are followed by the
2Hz fatigue specimen and then at last the
0.5Hz specimen, hence preserving the order
of Equation 15 till values of m as large
as 5 times the conventional value. Upon
increasing the value of m, the number
of vectors required to represent the time
series in Equation 11 decreases, consequently
reducing the compilation time. This shows
that the fractal dimension is highest in the
case of monotonic loading than those of
the fatigue cases, even for large values of
m. Also, it can be observed that with
the increase in the cycling frequency, the
correlation dimension increases.

From Figure 9, it can be seen that
as the micro-crack coalescence represented
by red dots progresses, number of balls
required to cover them reduces, and from the
definition in Equation 1, it is clear that the
corresponding correlation dimension D also
decreases. Therefore, it can be understood
that the correlation dimension D of the AE
time series is a very good estimator of the
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micro-crack spreading ahead of the crack tip.
Therefore, the increase in Nf and CMODmax

with an increase in the cycling frequency can
be attributed to the increase in D.

(a) Nine balls

(b) Three balls

(c) One ball

Figure 9: Reduction in fractal dimension with
increasing micro-crack coalescence

A higher value of D indicates a higher
density of micro-cracking, making the
process a cooperative one, in contrast to a
lower value, which represents a competitive
process where a single crack causes the
failure. These findings can be reinforced with
the results obtained from actual AE event
positions [10,20] where it was reported that,
under monotonic loading the micro-crackings
were significantly more, as shown in Figure
10. This implies that the toughening
mechanisms were more actively participating
in the crack arresting process for the
monotonic case and therefore results in a
pronounced softening response, as shown
in Figure 4. Whereas for fatigue, there

was a drastic decrease in the number of
micro-cracks, and thus justifying the fact
that fatigue induced fracture is a sudden and
abrupt incident. Similarly, with the increase
in the cycling frequency, the event densities
were relatively higher [21], which provides an
account for the increase in the fatigue life
cycles. The justification of Equation 15 can
intuitively from the AE event locations in
Figure 10.
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(b) 2Hz Fatigue AE event locations
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(c) 0.5Hz Fatigue AE event locations

Figure 10: AE event locations

This justifies the fact that fatigue induced
fracture is a competitive phenomenon rather
than a cooperative one [22]. Under fatigue,
an interesting observation is that with the
increase in cycling frequency, the life cycles
increase [20], and this can be attributed
to the increment in D. In summary,
for the monotonic case, more number of
micro-cracks interact within the FPZ, in
contrast to the case of fatigue, where the
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influence of the process zone is negligible.

5 CONCLUSIONS
Based on the fact that the fractal

dimension of the actual phase space
constructed from the AE event locations is
same as that of the one constructed from the
AE energy time series, the following points
can be concluded:

• The fractal dimension D is a direct
measure of the micro-crack sparsity
and density. Since, D is much higher
for monotonically loaded specimen
than that of the cyclically loaded
specimens, it can be confirmed that
monotonically loaded fracture is a
cooperative process while fatigue
induced fracture is competitive process
and thus explaining the severity of
fatigue over monotonic loading.

• With the increase in the cycling
frequency, more number of
micro-cracks are formed and thus there
is a relatively higher proportion of
toughening mechanisms take place,
and this results in a higher CMODmax

and Nf values respectively.

• Even selecting a higher value of
m successfully distinguishes between
fatigue and monotonic fracture
specimens based on the AE energies,
but with a lower computational effort,
as the number of constituting vectors
X1, X2, . . . Xn−m+1 reduces.

• Since this method does not require
the event locations, lesser number
of AE sensors can also be used for
on site health monitoring. This
method is much more computationally
inexpensive as well, and can be further
optimized by selecting higher values of
m.

This method fetches satisfactory results
with lesser number of AE sensors and also

with lesser computational effort, actual large
scale structures like dams and buildings
[15] can be monitored in real time. In
fact, this technique can be utilized to study
the micro-crack initiation and macro-crack
formation at the rock and concrete interfaces
of dams, and as expected, the value of the
fractal dimension reduces as the macro-crack
progresses by consuming micro-cracks ahead
of it, with the increase in the overload [23].
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