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Abstract: This study presents the implementation of a Cohesive/Overlapping Crack Model (COCM) 

integrated with the Finite Particle Method (FPM), a meshless numerical analysis technique 
grounded in vector mechanics. The FPM is widely acknowledged for its efficacy in addressing 

dynamic, nonlinear, and fracture-related challenges. The proposed combined model provides a 
robust framework for accurately capturing both tensile and compressive failure mechanisms in 
materials, including plain and reinforced concrete. To validate the mode l's capability, simulations of 

three-point bending specimens were conducted, demonstrating its effectiveness in representing the 
intricate fracture behavior of concrete structures. 
 

 

1 INTRODUCTION 

The common way to deal with the crack 
problem is to adopt the embedded 

discontinuous model [1] and node force 
release method [2]. The introduction of those 

methods allows the FEM tosolve the 
discontinuous problems while is still difficult 
to simulate the complex crack propagation. 

The boundary element method and element 
free Galerkin method have also widely 

adopted for discontinuous problem [3]. 
However, boundary element method is 
difficult to deal with nonlinear problems and 

element free Galerkin method is hard to deal 
with boundary condition. Some of the most 

developments in FEM modelling of crack 
propagation are based on the partition of unity.  

In this study, a new strategy based on the 

finite particle method is proposed to deal with 
the crack extension problem. Section 2 

introduces the basic concepts of FPM and 

describes cracking in the framework of FPM. 
Section 3 details the proposed COCM [4] for 
simulating elastic cracking and FPM-COCM 

method, which combines the FPM and COCM 
for simulating crack extension in concrete 

beams. 

2 DESCRIPTION OF CRACK 

PROPAGATION OF FPM 

The FPM method is a vector mechanics 
based computation method for solid media 

with large rotation and large deformation, and 
incorporates three fundamental concepts: point 
value description, path element, and fictitious 

reverse motion.  

2.1 Motion Equation 

Structure deformation and rigid motion are 
described by particle motion, namely 
Newton’s second law; the motion equation for 

an arbitrary particle i is given as 
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miẍi=Fi
ext-Fi

int-Fi
dmp (1) 

where mi , ẍi , Fi
ext, Fi

int , F
i

dmp
 are the mass, 

acceleration vector, externalforce vector, 
internal force vector and damping force vector 

of particle i, respectively. Fi
ext consists of the 

concentrated force vector [fix  fiy' ]
T  and 

equivalent force vector (from body force or 

surface force) [fjx
ext  fjy

ext ]
T

 of element j on 

particle i, the internal force 

vector  Fi
int = [fix

int  fiy
int ]

T
, and the damping force 

vector F
i

dmp
= [f

ix

dmp
 f

iy

dmp
]
T
. 

2.2 Particle internal force calculation 

To calculate the internal forces, pure 

deformation of the element is essential. 
Fictitious reverse motion is adopted to obtain 

the pure deformation by deducting the 
displacement caused by the rigid body 
translation and rotation from the total 

displacement.  
As shown in Fig.1, the planar element 

geometry is defined by three particles with 
node numbers (1, 2, 3) at time t and (1a, 2a, 3a) 
at time ta. The position vectors of node j (j = 1, 

2, 3) at  ta and t are ja x and xj, respectively. 
From ta to t, the increments of node 

translations are 

uj=x j-xa
j  (2) 

The triangular element at time t has 
undergone a rigid body motion, including rigid 
body translation and rigid body rotation. It is 

assumed that the displacement increments of 
node 1 are the rigid body translation of the 

element. For deducting the displacement 
caused by rigid body translation, a fictitious 
reverse rigid translation (-u1) of the triangular 

element is applied from t to ta, as shown in 
Fig.1, and the relative displacements are  

ηj=uj+(-u
1
),  j=1,2,3  (3) 

 

Figure 1: Reverse motion of element with three 

particles 

Then the fictitious reverse rigid body 
rotation (-θ) is adopted to deduct the 
displacement caused by rigid body rotation, as 

shown in Fig. 2, and the nodal displacements 
due to the in-plane rigid body rotation 

displacement are  

η
r
=[Rr(-θ)-I](x-x1) (4) 

where Rr(-θ)= [
cos (-θ) sin (-θ)

- sin (-θ) cos (-θ)
] is the 

rotation matrix. 

Pure deformation of the nodes, η
d
j , can be 

expressed as  

η
d

j =η
j

+η
r
j  (5) 

By taking the deformation vector of particle 
2 as the basis vector, the direction vector of 

new coordinates e1 and e2 can be expressed as  

 e1=
η

d

j

|η
d

j
|
= [

l

m

]  and e2=[
-m

l
] 

(6) 

Then, the pure deformation vector at the 

deformation coordinate can be written as 

∆ui=Q∆η
i
d   (i=1,2,3) (7) 

where Q= [
l m

-m l
]   is the transform matrix of 

the deformation coordinates. Corresponding 

strain incrementation Δε  and stress 

incrementation Δσ  can be calculated on the 
basis of the selected displacement mode as 

follows:  

Δε=B∆ui (8) 
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Δσ=DΔε (9) 

where B is the strain matrix and D is the elastic 
matrix.When Eq.(9) is considered and D is 

constant, the linearly elastic material is 

simulated, which stress is linear to the pure 
deformation. For different constitutive models, 
such as hyper-elastic material, stress may not 

be linear to pure deformation, which different 
strain measure should be considered.  

 

Figure 2: Fictitious reverse rigid-body rotation of a 

triangular element. 

To further obtain nodal force 
incrementation Δf , the virtual research 

principle is adopted: 

δWe=(δû*)
T
f̂=(δû*)

T
(f̂

a
+Δf̂) (10) 

f̂
a
=ta ∫ B̂

T

S

σ̂adA≅[f
2x

̂  f
3y

̂  f
3y

̂]
T
 (11) 

Δf̂=[Δf2x
̂ Δf3y

̂ Δf3y
̂]

T
=(ta∫ B̂

T

S

DB̂dA)û
*
 (12) 

Following the force equilibrium of the 
current solid element, the rest of the unknown 

incrementation of the force components can be 
calculated as: 

  ∑MẐ =0,  f
2y

̂ =(- f
2x

̂ y
2̂
+ f

3x
̂ y

3̂
- f

3y
̂ x3̂)/x 2̂  

        ∑ F̂x =0,  f
1x

̂ =(- f
2x

̂ + f
3x

̂ )  

        ∑ F̂y
̂ =0,  f

1y
̂ =(- f

2y
̂ + f

3y
̂ ) (13) 

In order to calculate the sum of the 
equivalent nodal forces of all solid elements 

connected to the same mass at moment t. Thus, 
the force vector must transform to global 
coordinates for summation and time-

integration as: 

        f
i
=[f

ix

'̂   f
iy

'̂ ]
T

=QT̂f
i

̂    (i=1,2,3) (14) 

Then let the solid element return to position 

after undergoing translation (+u1) and rotation 
(+θ) angle from experiencing the virtual 
position, so as to obtain the equivalent nodal 

force under the configuration at the current 
moment as, where R is the defined rotation 

matrix [5].  

          f
i
=[f

ix
 f

iy
]T=Rf

i

'  (i=1,2,3) (15) 

After obtaining the internal force, the new 
particle position can be obtained from Eq. (1) 

using a center difference method. The 
trajectory of all particles can be solved 

following the sequence: start at the new 
position and calculate the new internal force to 
get the next new position. 

3 DESCRIPTION OF CRACK 

PROPAGATION OF FPM AND COCM 

There are many developed techniques for 
crack evaluation in concrete structures, 
including quarter point displacement, J-

integral, FCM, two parameter fracture models, 
COCM. 

This section introduces the FPM-COCM, 
combining FPM and COCM, to simluate crack 
propagation. 

3.1 Description of crack in FPM 

In FPM, a discretized particle model is 

adopted, in which solid fracture can be 
simulated by particle separation. Suppose the 
initial crack occurs as depicted in Fig. 3. 
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Figure 3: Fracture simulated by particle separation. 

In crack propagation, primary particles 

separate into two new particles, and a new 
fracture surface is produced. In this study, 
solid fracture is assigned occur on the weak 

layer. Because the solid is attached to the fixed 
ground with the weak layer, the maximum 

tensile stress criterion is adopted as the 
fracture criterion: 

σ1≤[σ] (16) 

When certain fracture behavior occurs, 

corresponding external force, namely fracture 

force Ffrac , should be considered on new 

separated particles, in which different crack 
propagation mechanisms can be taken into 
account. Thus Eq. (1) should be rewritten as 

Eq. (17).  
Although FPM’s implementation in fracture 

is relatively simple[6], the advantages can be 
demonstrated by simulating the fracture in 
combination with FPM and COCM later on. 

miẍi=Fi
ext-Fi

int-Fi
dmp-Fi

frac (17) 

3.2 FPM-COCM method 

The Cohesive Crack Model has been 
widely applied to simulate the damage process 

zone ahead of the crack tip in concrete 
structures [7-9] . 

According to this model, the material 
behaves elastically during the first loading 
stage in Fig.4(a), whereas in the zone where 

the principal stress reaches the tensile strength, 
σt, the process zone starts developing. Within 

this zone, a cohesive law in Fig.4(b). 

 

Figure 4: COCM: (a) pre-peak linear-elastico σ-ε law; 

(b) post-peak σ-ωt cohesive relationship 

In the form 𝜎-w
t
, σ being the applied stress 

and wt the crack opening, is adopted. Stresses 

apply until. the critical value of crack opening, 
wtcr, is reached: beyond this limit, the crack 
faces assume a stress-free condition. 

In the present study, a cohesive constitutive 
law as: 

σ=σt(1-
wt

wcr
t

) 
(18) 

3.3 Numerical example 

The numerically simulation using the FPM 
program with COCM to simulate the three-

point bending test with a specimen geometry 
of l × d × b = 500 mm × 100 mm × 40 mm and 
a prefabricated crack of 30 mm in Fig. 5. 

 

Figure 5: Schematic diagram of the specimen(mm) 

Fig. 6 illustrates the stress distribution 

within the model, as computed by the fracture 
simulation program. Several critical time 
points were selected to systematically analyze 

the fracture progression: 
Initially, in the absence of external force, 

the model exhibits neither stress nor 

deformation. As displacement loading 
intensifies, minor deformation becomes 

apparent, accompanied by stress concentration 
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at the tip of the pre-existing notch. With 
further displacement increase, the maximum 

tensile stress at the notch tip reaches the 
material's tensile strength, while additional 

stress concentrations emerge at both the 
loading point and support regions. The fracture 
process advances as the first node at the crack 

tip disconnects, causing the stress 
concentration to propagate forward. Ultimately, 

complete fracture occurs throughout the model, 
triggering the program's loop termination. 

The simulated fracture process 

demonstrates excellent agreement with actual 
fracture behavior, providing further evidence 

that the FPM fracture program integrated with 
COCM effectively captures the fracture 
mechanics of solid materials. 

 

Figure 6: Stress contour of fracture process 

4 CONCLUSIONS  

This study introduces an innovative 

computational approach, the FPM-COCM 
method, for simulating crack propagation 
processes. The current research has 

successfully implemented the cohesive 
cracking simulation module within this 

framework. 
Future work will focus on enhancing the 

FPM-COCM methodology by integrating the 

fictitious crack model into the FPM framework, 
thereby developing an efficient and robust 

solution for cohesive/overlapping crack 
propagation problems. The model's validity 

will be systematically evaluated through an 
extensive experimental program involving 
four-point bending tests on 54 pre-notched 

reinforced concrete (RC) beams. These tests 
will demonstrate the model's capability to 

accurately capture size-scale effects and 
failure mode transitions. Comprehensive 
analysis of key fracture characteristics, 

including load-bearing capacity, crack 
propagation patterns, and brittleness number, 

will further validate the model's effectiveness 
in representing the complex fracture behavior 
of concrete structures. 
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