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Abstract. This paper presents a computational approach for simulating the fracture behavior of re-
inforced concrete. Cracks are discretely modeled using zero-thickness cohesive interface elements,
while the reinforcement is explicitly represented by elastoplastic Timoshenko beam elements. The
interaction between reinforcement and concrete is captured through specially developed coupling
elements. To demonstrate the performance of the proposed computational approach, two series of
experiments on reinforced concrete beams without shear reinforcement subjected to four-point bend-
ing were numerically analyzed in a 3D setting. In the first series of tests, the SL series performed
by Syroka-Korol and Tejchman, the beam size was scaled in two dimensions while the span-to-depth
and reinforcement ratios were kept constant. The distinct feature of these tests is that the failure mode
was consistent across all sizes, enabling size-effect analysis. In the second series, the S1 series by
Suchorzewski et al., only the beam depth was scaled, while the span, load location, and reinforcement
ratios remained unchanged. This series exhibited markedly different failure modes for each size, al-
lowing the assessment of the capabilities of the proposed modeling approach to capture the effects of
the shape and size on the mechanical response of reinforced concrete beams. The proposed compu-
tational approach effectively captures size-dependent peak loads, failure modes, and fracture patterns
in all investigated tests.

1 INTRODUCTION

Numerical analyses of structures made of
quasi-brittle composite materials such as rein-
forced concrete require robust models for the
opening and propagation of cracks that ade-
quately represent the discontinuous character of
the fracture processes and consider stress trans-
fer mechanisms occurring within the fracture
process zone. The first numerical approaches
for fracture analyses were introduced in the
1960s and 1970s [1, 2]. Over the last 50 years,
two major approaches for modeling damage and
fracture have been discerned - the discrete and
smeared approaches. This paper is concerned

with discrete fracture modeling.
The discrete approaches are modeling cracks

as discrete surfaces, with their constitutive be-
havior defined through traction-separation rela-
tions. Hence, no localization limiters are re-
quired.

A family of embedded crack methods allows
for incorporating strong and weak discontinu-
ities into the finite element kinematics, such as
in formulations proposed in [3]. A notewor-
thy advantage of this class of methods is that
they can be formulated to avoid increasing the
number of global degrees of freedom. This ap-
proach, however, requires a sophisticated finite
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element technology, as the standard formulation
suffers from various locking issues (see [4]).

The eXtended Finite Element Method
(XFEM) [5, 6] enables modeling discrete crack
propagation without re-meshing. One difficulty
associated with the XFEM method is the need to
track the cracks throughout the computational
domain, which is quite complex when multiple
cracking in 3D is considered, as in structural
simulations of reinforced concrete (RC).

The classical discrete approach is the cohe-
sive zone model based on zero-thickness inter-
face elements [7]. In the context of concrete
fracture, many models exist, such as [8, 9, 10],
to name a few. This approach has a signif-
icant advantage in that it can naturally simu-
late multiple cracking. Nevertheless, it also
comes with some disadvantages, such as the
high computational cost and the inherent mesh
bias because possible crack paths are restricted
to paths between the solid finite elements. The
issue of computational expense can be miti-
gated by adaptive interface insertion procedures
[11, 12], and in order to reduce the mesh bias,
complex re-meshing strategies are sometimes
applied (see e.g., [13]), or mesh reorientation
schemes [14].

An alternative to the previously described
methods are lattice-based and discrete element
methods (e.g., [15, 16, 17]). One of the chal-
lenges associated with this class of models is
that the material parameters, such as Young’s
modulus, cannot be directly used as input pa-
rameters. Rather, the mechanical properties of
lattice elements must be calibrated to obtain the
matching elastic behavior.

This paper proposes a displacement-based
discrete fracture model utilizing zero-thickness
interface elements equipped with a cohesive-
frictional traction-separation relation that also
incorporates a crack dilatancy submodel. Ad-
ditionally, the paper describes a model for re-
inforcement bars based on elastoplastic TIMO-
SHENKO beam elements and the coupling el-
ements that enforce the frictional bonding be-
tween concrete and reinforcement.

The performance of the proposed model is

evaluated by numerical analyses of the two sets
of experiments on RC beams without shear re-
inforcement subjected to four-point bending.
The first set of experiments by Syroka-Korol
and Tejchman [18] involves beams scaled in
two dimensions with the span-to-depth and re-
inforcement ratios constant. The distinct fea-
ture of these tests is that the failure mode was
consistent across all sizes, enabling size-effect
analysis. The second set of experiments by Su-
chorzewski et al. [19] involves beams whose
depth was scaled while the span and reinforce-
ment ratios remained fixed across all sizes. This
series exhibited different failure modes for each
size. The selected experiments present chal-
lenging benchmarks for fracture models as they
involve size-effect and size-dependent failure
modes in reinforced concrete. Therefore, they
enable a thorough assessment of the capabilities
of the proposed computational approach to cap-
ture the main features of the analyzed fracture
experiments.

2 DISCRETE MODELING OF CRACK-
ING BEHAVIOR IN RC

In this work, the concrete bulk is assumed to
be a homogeneous linear elastic medium. All
nonlinearities are lumped into cohesive cracks.
The bulk material is discretized by tetrahedral
finite elements with four nodes, while the crack-
ing of the matrix is modeled using cohesive
zero-thickness interface elements. The zero-
thickness interface elements are adaptively in-
serted between solid elements according to the
algorithm described in [12] and [20]. The in-
terface element kinematics are defined accord-
ing to the local coordinate system x’-y’-z’ illus-
trated in Figure 1a. The local coordinate x’ al-
ways points in the direction of the normal to the
middle surface of the interface element, and the
coordinates y’ and z’ are mutually orthogonal
and lie in the plane of the middle surface. The
crack opening in the local coordinate system of
the interface element [[u′]] is calculated as

[[u′]] = RNuu
e, (1)
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(a) (b) (c)

Figure 1: Components of the model for RC structures: (a) zero-thickness interface elements, (b) TIM-
OSHENKO beam elements, (c) penalty-based frictional coupling between rebar and the background
mesh.

where ue are the nodal displacements, Nu is
the displacement jump operator, and R is the
rotation matrix (see [21] for details). The ex-
pression for the interface element internal force
vector (f ieint) reads:

f ieint =

∫∫
Γe
c

NT
uR

T t′cdA, (2)

where Γe
c is the surface area of the middle sur-

face, and t′c is the traction vector in the local
coordinate system of the interface element, de-
scribed in the following subsection.

The rebars in this work are modeled utiliz-
ing beam theory (see, e.g., [22]). The refer-
ence (neutral) line of the rebar is discretized in
C0 continuous 1D straight linear TIMOSHENKO

beam finite elements (see Figure 1b) with re-
duced integration. The approximated material
strains at any point of the cross-section in the
local coordinate system of the beam element are
obtained as

ε′ = SBR̂ûe, (3)

where ûe are the generalized nodal displace-
ments, the auxiliary matrix S [22] defined as

S =

1 0 0 0 z′ −y′
0 1 0 −z′ 0 0
0 0 1 y′ 0 0

 , (4)

B is the discrete gradient operator and R̂ is a
12×12 block rotation matrix (see [21] for de-
tails). The kinematic relations presented above

allow for a dimensional reduction of the rein-
forcement model from 3D to 1D, fully repre-
senting rebar kinematics utilizing only its axis.
The internal force vector (f beint) of the beam ele-
ment can be evaluated as:

f beint =

∫
Lbe

R̂TBT Σ̂
′
dx′. (5)

where Lbe is the beam element length, and Σ̂
′

is the vector of stress resultants evaluated via
the integration of the stresses across the beam
cross-section as

Σ̂
′
=

∫∫
Abe

ST

σx′x′

τx′y′

τx′z′

 dA, (6)

with Abe denoting the cross-section area of the
beam element. It should be noted that the stress
resultants defined in Eq. 6 depend only on σx′x′ ,
τx′y′ , and τx′z′ components of the CAUCHY

stress tensor in the local coordinate system of
the beam cross-section. The remaining compo-
nents are required to vanish (σy′y′ = σz′z′ =
τy′z′ = 0), which is enforced algorithmically
through an iterative procedure proposed in [23].

The coupling between reinforcement and
concrete is conceptualized as a penalty-based
line element connecting the reinforcement and
the background finite element mesh of the bulk
material discretized by solid tetrahedral ele-
ments, illustrated in Figure 1c. This element is
equipped with a cohesive-frictional bond rela-
tion and impenetrability constraints that prevent
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the reinforcement from freely moving inside the
solid elements. The relative slip between rebar
and concrete at a specific integration point of
the coupling element is evaluated as:

[[u]]′b = R(ur −uc) = R[Nr −Nc]

[
ûe
r

ue
c

]
, (7)

where ûe
r and ue

c denote the nodal displace-
ments of reinforcement and concrete, R is the
rotation matrix, and Nr and Nc denote the
shape function values of the beam and solid el-
ement evaluated at the specific integration point
of the coupling element [21]. The local coor-
dinate system is defined such that the local x′

coordinate points in the direction of the rein-
forcement (Figure 1b). Frictional interactions
and impenetrability constraints are treated on
the level of constitutive relation, where they are
coupled with a traction-separation relation that
defines the initiation of debonding and consti-
tutive behavior of the bond through the traction
vector t′b. The internal force vector of the cou-
pling element (f ceint) can be evaluated as:

f ceint =

∫
Lbe

[Nr −Nc]
TRT t′bπϕdx

′, (8)

where Lbe is the beam element length, and ϕ is
the diameter of the rebar.

2.1 Constitutive behavior of concrete
This subsection introduces the traction-

separation relation for discrete cracks, describ-
ing crack initiation and the evolution of residual
strength in plain concrete. It also includes sub-
models for crack closure, frictional contact, and
dilatancy within the constitutive framework. In
this way, all mechanical processes related to
cracking are addressed at the material level. To-
tal traction at a single material point can be eval-
uated as

t′ = (1− dc)Kc

[[u′x′ ]− [[u′x′ ]]dil
β2

κ
[[u′y′ ]]

β2

κ
[[u′z′ ]]


+ dcKc

[[u′x′ ]]− [[u′x′ ]]dil

[[u′y′ ]]− [[u′y′ ]]µ
[[u′z′ ]]− [[u′z′ ]]µ

H(−t′x′).

(9)

where [[u′x′ ], [[u′y′ ]], and [[u′z′ ]] are components of
the crack opening vector in the local coordinate
system of the crack, [[u′x′ ]]dil is the normal open-
ing due to dilatancy, [[u′y′ ]]µ and [[u′z′ ]]µ denote
components of frictional sliding vector, dc is the
damage parameter, Kc is the penalty parameter
that regularizes the crack initiation, β = fs/ft
is the ratio between shear and tensile strength,
κ = GF,II/GF is the ratio between fracture en-
ergies in mode II and mode I, and H(−t′x′) is
the contact activation function (Heaviside func-
tion). Contact activation function can be equiv-
alently expressed in terms of the current crack
normal opening and the dilatancy contribution
so that:

H (−([[u′x′ ]]− [[u′x′ ]]dil)) =

{
1, [[u′x′ ]]− [[u′x′ ]]dil ≤ 0,

0, otherwise
(10)

The damage evolution is driven by the maximal
value αmax = max(αc(t))

t∈[0,T ]

of equivalent crack

opening (αc) experienced by the material point
from the beginning of the analysis (t = 0) to the
current time (t = T ). The relation for equivalent
crack opening (αc) as proposed in [9]

αc =

√
⟨[[u′x′ ]]⟩2+ +

β2

κ2
([[u′y′ ]]

2 + [[u′z′ ]]
2), (11)

is used, where ⟨•⟩+ denotes the MACAULAY

brackets. The traction separation law is com-
pleted by the definition of the softening func-
tion, which ensures that the appropriate amount
of fracture energy is dissipated during the
cracking process. Here, the bi-linear soften-
ing relation qc(αmax) illustrated in Figure 2a is
adopted. The softening function reads

qc(αmax) =


ft

α1−αmax
α1−α0

, α0 ≤ αmax ≤ αint,

ft,int
αult−αmax
αult−αint

, αint < αmax ≤ αult,

0, αmax > αult,
(12)

where α0 =
ft
Kc

, and parameters α1 = 2Gf/ft+
α0, αint = α1 − (α1 − α0)ft,int/ft and αc,ult =
2Gf,res/ft,int + αint. For concrete it is typi-
cally assumed that ft,int = 0.25ft and GF =
Gf + Gf,res = 2Gf to 2.5Gf (see, e.g., [24]).
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(a) (b) (c)

Figure 2: Components of the constitutive model: (a) bilinear softening law describing the progres-
sive loss of cohesion in concrete cracks, (b) crack dilatancy mechanism causing normal opening
due to contacts between asperities (indicated by red stars) during tangential sliding, and (c) penalty-
regularized elastoplastic model for frictional sliding.

The damage parameter is evaluated as dc =
min(1 − qc

Kcαmax
, 1). Figure 2b illustrates a sim-

plified physical intuition of the dilatancy stem-
ming from the crack roughness, depicting how
shear displacement of crack faces is impeded
by asperities in the form of aggregates or crack
irregularities. The tangential displacement of
crack faces leads to contact between asperities
at small crack openings, causing further nor-
mal opening of the crack. If reinforcement is
present, this mechanism can result in the devel-
opment of normal compressive forces, thereby
increasing frictional resistance. Following the
argument by Alfaiate and Sluys [25], this work
adopts a total format for expressing dilatancy.
The simplified model proposed here defines
normal crack opening due to dilatancy ([[ux′ ]]dil)
as:

[[u′x′ ]]dil = ūdiltanh
(

tan(ψdil)

ūdil

√
[[u′y′ ]]

2 + [[u′z′ ]]
2

)
.

(13)
The hyperbolic tangent function is chosen as a
regularization for the bi-linear ramp function.
In Eq. 13 ψdil is a dilatancy angle, ūdil repre-
sents the limit normal opening jump due to dila-
tancy. According to [26], the value of dilatancy
limit ūdil should be chosen as half the size of the
largest aggregate used in a concrete mix.

Frictional sliding between crack faces can
occur when cracks are closed and experience
compressive and shear stresses. Since fric-
tional sliding can only occur in already initi-

ated cracks, the damage parameter dc is utilized
to distinguish the fraction of cohesive zone that
has been fully cracked (see Eq. 9), following the
idea proposed in [27]. Friction is modeled using
the plasticity framework with penalty parameter
Kc to regularize the transition between sticking
and slipping states, as illustrated in Figure 2c.
Utilizing the elastoplastic analogy, the frictional
yield function (fµ) is defined as:

fµ(t
′
µ) = ∥t′µ∥ − µ∥⟨−t′x′⟩+∥ ≤ 0, (14)

where µ is the COULOMB friction coefficient
and t′x′ is the normal compressive traction be-
tween the crack faces, and t′µ is the fric-
tional traction vector. The plastic potential and
the corresponding non-associative flow rule are
chosen as

gµ(t
′
µ) = ∥t′µ∥, ˙[[u′]]µ = λ̇µ

∂gµ
∂t′µ

, (15)

in order not to produce any dilatant plastic
opening in the direction normal to the crack
surface (x′) since the dilatancy is treated sep-
arately. In Eq. 15, λ̇µ is the plastic multi-
plier. The friction submodel is completed with
KARUSH-KUHN-TUCKER conditions λ̇µ ≥
0, fµ ≤ 0, λ̇µ fµ = 0.

2.2 Constitutive behavior of reinforcement
This section briefly outlines the constitu-

tive model for steel rebars modeled as TIM-
OSHENKO beam elements. During crack-
bridging action, reinforcement can be exposed
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to considerable stress levels, causing the ma-
terial behavior to cease being elastic. In this
work, the plastification is modeled utilizing an
elastic-perfectly plastic Von-Mises law. In par-
ticular, the rebars following the TIMOSHENKO

beam kinematics obey a 3D constitutive law
at the cross-section level. The material strains
are calculated on the cross-section level utiliz-
ing Eq. 3, and then the stresses are calculated
and integrated to obtain the stress resultants in
the local coordinate system of the beam accord-
ing to Eq. 6. In this way, the partial or com-
plete plastification of the cross-section can be
distinguished. The elastic part of the material
response is characterized by two elasticity pa-
rameters (bulk modulus K and shear modulus
G), and the plastic part is characterized by the
yield stress (σy). The yield function (fy) is de-
fined as:

fy =

√
3

2
σ′

dev : σ
′
dev − σy ≤ 0, (16)

where σ′
dev = σ′− 1

3
tr(σ′)I is the deviatoric part

of the CAUCHY stress tensor σ′. The associa-
tive flow rule is assumed, and so the evolution
of plastic strains (ε̇′p) and the strain-like internal
variable (α) are defined as

ε̇′p = λ̇
∂fy(σ

′, α)

∂σ′ , α̇ =

√
2

3
λ̇, (17)

with λ̇ being the plastic slip multiplier.
The elastoplastic constitutive relation is com-
pleted with KARUSH-KUHN-TUCKER condi-
tions, given as λ̇ ≥ 0, fy ≤ 0, λ̇ fy = 0.

As mentioned earlier, the stress components
σ′
y′y′ , σ

′
z′z′ , and τ ′y′z′ are required to vanish due

to the modeling assumptions of the beam the-
ory.

2.3 Cohesive-frictional bond model
This subsection introduces the formulation

of the cohesive-frictional behavior of the bond
between rebar and concrete. The bond between
reinforcement and concrete is conceptualized
as elastic bedding between the matrix and re-
inforcement phases. The elastic bedding con-
sists of three distributed springs, oriented to

align with the local coordinate system of the
beam. One spring, aligned parallel to the re-
bar, is equipped with an elastoplastic bond-slip
relation, while the two lateral springs have high
initial elastic stiffness (penalty parameter Kb)
that ensures no lateral penetration of the rebar
into the matrix occurs.

The debonding and subsequent frictional slip
are modeled utilizing the penalty-regularized
elastoplastic framework. The constitutive rela-
tion describing the debonding process is defined
by the following yield function

fb = |t′b,x′| − qb(s̄p) ≤ 0, (18)

where t′b,x′ is the axial bond stress, and qb(s̄p)
is the stress-like internal variable depending on
the accumulated plastic slip s̄p. The evolution
of the bond strength during progressive debond-
ing is adopted from the fib Model Code 2010
[28] in a slightly modified form as:

qb(s̄p) =



τ0, s̄p ≤ s0

∆τ1(
s̄p
s1
)n + τ0 + µscp, s0 < s̄p ≤ s1

τmax + µscp, s1 < s̄p ≤ s2

∆τ2
s3−s̄p
s3−s2

+ τf + µscp, s2 < s̄p ≤ s3

τf + µp, s̄p > s3,
(19)

with ∆τ1 = τmax − τ0 and ∆τ2 = τmax − τf .
In Eq. 19, also illustrated in Figure 3, τmax,
and τf describe the maximal and residual bond
strengths, while τ0 denotes the onset of nonlin-
earity. In this relation, friction is accounted for
through µscp, where p =

√
t2y′,b + t2z′,b is the lat-

eral pressure that rebar exerts on concrete, and
µsc is the COULOMB coefficient between rebar
and concrete. The steepness of the segments is
controlled through parameters s0 = τ0

Kb
, s1, s2,

and s3. Parameters τmax, τf , s1, s2, and s3 can be
identified through empirical equations in Model
Code [28]. Finally, n is the power-law expo-
nent, adopted as 0.5 in this work.
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Figure 3: Illustration of the bond-slip law with
the interpretation of model parameters.

The evolution of the plastic slip (sp) and the
accumulated plastic slip (s̄p) are defined as

ṡp = λ̇b
∂fb
∂t′b,x′

, ˙̄sp = λ̇b, (20)

with λ̇b being the plastic slip multiplier.
The elastoplastic bond-slip relation is com-
pleted with KARUSH-KUHN-TUCKER condi-
tions, given as λ̇b ≥ 0, fb ≤ 0, λ̇b fb = 0.

This completes a brief outline of constitutive
models proposed in this work to describe the
cracking behavior of reinforced concrete. Fur-
ther details, including the discretization and im-
plementation aspects, can be found in [21].

3 ANALYSIS OF RC BEAMS
To demonstrate the performance of the pro-

posed discrete fracture modeling approach, two
series of experimental size effect tests on rein-
forced concrete beams subjected to four-point
bending performed by Tejchman and coworkers
were numerically analyzed in a 3D setting.

3.1 SL series: Constant span-to-depth ratio
In the experimental campaign by [18], beams

of three different sizes were investigated. Fig-
ure 4 illustrates the four-point bending setup
with beam dimensions and locations of supports
and loading plates.

The fracture properties of concrete used
in the numerical simulations were determined
according to recommendations provided by
Model Code 2010 [28] utilizing the experimen-
tal measurements in [19]. The lower bound of

the characteristic tensile strength was adopted
in the numerical analyses (ft = 0.7ft,m ≈
2.2MPa). The mixed mode fracture parameters
(β, κ, µ, ψdil) were adopted according to typi-
cal values taken from the literature. All beams
were reinforced with ribbed longitudinal rein-
forcement bars with a reinforcement ratio of
1% (see cross-sections in Figure 4b for rebar
placement and diameters). The material proper-
ties of steel rebars in the numerical simulations
were selected according to the data provided by
[18]. Accordingly, Young’s modulus was Es =
200GPa, Poisson’s ratio was ν = 0.3, and the
yield strength was σy = 500MPa. The bond pa-
rameters for the bond model in the numerical
simulations were adopted from [29]. A friction
coefficient between steel and concrete of µsc =
0.4 was assumed. Table 1 provides the complete
list of bond properties used in the numerical
analyses of the SL beam series. Figure 5a shows
comparisons between experimentally and com-
putationally obtained responses for beams of
SL series, as well as comparison with nu-
merically obtained responses by Syroka-Korol,
Tejchman, and Mroz [29] who used a non-
local damage-plasticity approach. The numeri-
cally obtained load-displacement curves closely
resemble the experimental curves in terms of
characteristic features. The calculated peak
loads match the experimental peak loads satis-
factorily, with only the peak load of the small-
est beam slightly overestimated but still within
a range of 10% deviation from the mean peak
load of the experiments. The failure modes and
fracture patterns are very well captured for all
sizes, as shown in Figure 5b. In Figure 5b,
only the localized cracks are shown, i.e., the
interface elements with an opening magnitude
greater than 0.075mm. For the smallest beam,
the dominant diagonal crack is located slightly
closer to the support than in the experiment
(more to the left), while the locations of criti-
cal diagonal cracks for medium and large beams
are captured very well. Compared to the exper-
iments and the modeling approach in [29], the
present model shows slightly less abrupt failure,
which can be a consequence of the choice of the
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Table 1: Material and numerical parameters used in numerical analysis of SL beam series.

Concrete Properties
Property Unit Value

E [MPa] 34000.0
Kc [N/mm3] 34000000.0
ν [-] 0.2
ft [MPa] 2.2
β = fs

ft
[-] 2.0

GF [N/mm] 0.14
κ = GF,II

GF
[-] 10.0

µ [-] 0.7
ft,int = 0.25ft [MPa] 0.55
Gf = 0.4GF [N/mm] 0.056
tan ψdil [-] 0.2
ūdil [mm] 16.0

Concrete-Rebar Bond Properties
Property Unit Value

Kb [N/mm3] 80000.0
τ0 [MPa] 1.0
τmax [MPa] 11.83
τf [MPa] 1.77
s1 [mm] 0.6
s2 [mm] 0.6
s3 [mm] 1.0
µsc [-] 0.4

fib bond-slip model that does not account for the
evolution of the radial stresses in the vicinity of
the rebar, as discussed in [29]. Nevertheless, the
failure occurs by the formation of the dominant
shear crack, indicating that the model correctly
captures the failure mode.

3.2 S1 series: Varying span-to-depth ratio

This subsection presents the computational
investigations of the second set of beams
subjected to displacement-controlled four-point
bending, the S1 series [19]. Figure 6 illustrates
the four-point bending setup with beam dimen-
sions and the locations of supports and loading
plates. The experimental data show that the col-
lapse was triggered by a different failure mode
for each beam size. These experiments serve as
a valuable validation data set to test the capa-

bilities of the developed model to capture dif-
ferent, size-dependent failure modes. The ma-
terial properties for concrete were adopted ac-
cording to experimental tests performed in [19]
and are provided in Table 2. As in the SL series,
the lower bound of the characteristic tensile
strength was adopted in the numerical analyses
(ft = 0.7ft,m ≈ 2MPa). The mixed-mode frac-
ture parameters were adopted according to the
typical values from the literature. The number
of ribbed longitudinal rebars used in the exper-
iments varied for different beam sizes to keep
the reinforcement ratio of 1.4% constant for all
tests. The details about the geometrical prop-
erties and placement of rebars are contained in
Figure 6. The material properties of steel rebars
in numerical simulations were selected accord-
ing to the data provided in [19]. Accordingly,

(a) (b)

Figure 4: Test setup for the SL beam series: (a) beam dimensions parameterized by the effective
section depth D={160,360,750}mm, (b) cross-section dimensions. All dimensions in [mm].
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(a)

(b) Small

(c) Medium

(d) Large

Figure 5: Comparison of experimentally and numerically obtained (a) force-displacement curves for
SL beam series for all three sizes, and final experimental and numerical fracture patterns, overlayed
for comparison: (b) small, (c) medium, (d) large. Experimental crack patterns reproduced from [18].
Beams in figures are rescaled to the same size.

Young’s modulus was Es = 205GPa, Poisson’s
ratio was ν = 0.3, and the yield strength was σy
= 560MPa. The bond parameters adopted for
numerical simulations are calculated according
to recommendations of Model Code 2010 [28],
assuming unconfined concrete and good bond
conditions. The friction coefficient between
steel and concrete was assumed as µsc = 0.4. Ta-
ble 2 provides the complete list of bond proper-
ties used in numerical analyses of the S1 beam
series.

Figure 7a shows comparisons between ex-
perimentally and numerically obtained load-
displacement curves for three beams of dif-
ferent sizes from the S1 test series, as well
as the comparison with numerical results from
[30], who used a non-local damage-plasticity
model for concrete. Each of the three beams
failed under a different failure modes, lead-
ing to markedly different load-displacement
responses regarding peak loads and ductility.
Overall, the calculated response resembles the
experimental load-displacement curves well.
Also, importantly, the model has shown the ca-
pability to capture failure modes and crack pat-
terns correctly for beams of all sizes as shown
in Figure 7b (only cracks with opening larger
than 0.07mm are shown).

(a)

(b)

(c)

Figure 6: Test setup and dimensions for the S1
beam series: (a) small size beam, (b) medium
size beam, and (c) large size beam. All dimen-
sions in [mm].

There are, however, some deviations be-
tween experimental and calculated load-
displacement curves. In particular, the numeri-
cal response of the largest beam shows a stiffer
post-cracking response as compared to the ex-
periments.

9
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Table 2: Material and numerical parameters used in numerical analysis of S1 beam series.

Concrete Properties
Property Unit Value

E [MPa] 33100.0
Kc [N/mm3] 33100000.0
ν [-] 0.2
ft [MPa] 2.0
β = fs

ft
[-] 4.5

GF [N/mm] 0.1
κ =

GF,II

GF
[-] 12.5

µ [-] 0.7
ft,int = 0.25ft [MPa] 0.5
Gf = 0.4GF [N/mm] 0.04
tan ψdil [-] 0.4
ūdil [mm] 8.0

Concrete-Rebar Bond Properties
Property Unit Value

Kb [N/mm3] 80000.0
τ0 [MPa] 1.0
τmax [MPa] 16.77
τf [MPa] 6.15
s1 [mm] 1.0
s2 [mm] 2.0
s3 [mm] 10.0
µsc [-] 0.4

4 CONCLUSIONS
This paper proposed discrete fracture and re-

inforcement models and demonstrated their ca-
pabilities in simulating bending and shear fail-
ure of RC beams subjected to four-point bend-
ing tested in two series of size-effect experi-
ments. The model successfully captured the ul-
timate loads, failure modes, and fracture pat-
terns for all investigated beams. Some devi-
ations in the post-cracking ascending branch
observed in the analysis of the largest beam
from one set of experiments still need to be fur-
ther investigated. The sensitivity of the pro-
posed model to individual parameters will be
discussed in detail in a forthcoming publication.
However, the model has demonstrated its capa-
bility to reproduce the different failure modes
and crack patterns in all structural experiments,
which makes it a suitable tool for both service-
ability and failure analysis of RC structures.
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sitätsbibliothek, 2024.
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