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Abstract: Creep of concrete refers to the progressive increase of deformation of a representative 

material volume subjected to a sustained stress. At low ratios between applied stress and material 

strength, an increase of the stress relates to an approximately linear increase of the deformation. 

Nonlinearities occur once the stress exceeds some 40% of the strength. In this work, the origins of 

such nonlinearities are explored, explicitly separating the contributions from viscoelastic processes 

and damage due to cracking. A multilevel uniaxial compressive creep test on a mature concrete [1] is 

re-analyzed. Additionally to documenting the prescribed loading and to measuring the strains, the 

acoustic emission technique was used to monitor the creation of microcracks. These data were used 

as input to formulate an analytical model as follows. The reported strength was related to the 

hydration degree of the material via a validated multiscale model. The obtained hydration degree, 

together with the mix design, served as input for quantifying linear, nonaging, basic creep properties 

of uncracked concrete by means of another well-validated multiscale model for creep of cementitious 

materials under saturated conditions. The obtained creep function was then extended to account for 

(i)  different levels of time-invariant relative humidity (constant moisture during creep testing), by 

means of a creep reduction factor, (ii) nonlinear viscoelastic processes, by means of the affinity 

concept [2], and (iii) diffuse microcracking, by means of a micromechanics-motivated damage factor 

which relates the creation of microcracks to a proportional increase in the compliance of concrete. In 

[5], it was shown that cracks created during both quasi-static load application and sustained loading 

have an important influence on the deformation behavior of concrete. Herein, further experiments are 

analyzed. This confirms that nonlinear viscoelastic phenomena govern the creep behavior at medium 

stress levels, while cracking-induced damage dominates the behavior at high stress levels. 
 

1 INTRODUCTION 

Nonlinear creep of concrete and its 

microstructural origin is the subject of an 

ongoing scientific debate. Common modelling 

strategies include (i) the use of the micro-

prestress-solidification theory [3,4], 

considering couplings between creep, drying, 

and cracking; and (ii) the use of the affinity 

concept [2], stating that nonlinear creep is 

affine to linear creep through an affinity 

parameter which is a function of the stress-to-

strength ratio. The former models tend to be 

more general but are also quite complex and 

require the calibration of many different 

parameters. The latter model is much simpler 

but leaves the mechanisms behind nonlinear 

creep unclarified. 

Recently [5], a model was developed for 

nonlinear creep of concrete based on the 

experimental data from Rossi et al. [1], where 

the influences of aging [6], drying [7], and 
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temperature changes [8] are negligible. The 

model suggests, through a comparison between 

micromechanical and rheological models 

[9,10], that nonlinear creep occurs due the 

combination of (i) nonlinear viscoelastic 

phenomena, explained through the affinity 

concept, and (ii) diffuse microcracking-induced 

damage, modelled through a newly introduced 

damage factor that relates the creation of 

microcracks to a proportional increase in the 

compliance of concrete. 

The present contribution is organized as 

follows. Section 2 presents the multistage 

nonlinear creep test by the Rossi et al. [1]. 

Section 3 refers to micromechanics-based 

damage modelling, accounting for different 

types of crack networks. Section 4 contains the 

application of the damage approach to 

multiscale nonlinear creep modelling. Section 5 

is devoted to laws for the evolution of diffuse 

microcracking during load application and 

during sustained loading, respectively [5]. In 

Section 6, the model is newly employed for the 

analysis of two sets of linear and nonlinear 

creep tests on CEM I and CEM II concretes. 

Finally, conclusions are presented in Section 7.  

2 MULTILEVEL UNIAXIAL 

COMPRESSION CREEP TEST AT 

LARGE STRESS LEVELS 

Rossi et al. [1] used the technique of acoustic 

emissions to analyze a multilevel basic 

nonlinear creep test performed in five stages. 

While subjecting a slender concrete cylinder 

(diameter = 16 cm, height = 100 cm) to uniaxial 

compression, measurements of the prescribed 

stress and of the induced strain were taken, and 

the number of acoustic events was recorded. 

Herein, the first three load stages are analyzed, 

given that strain and acoustic events can both 

be identified as a function of time. As regards 

the latter two stages, [1] only provides the 

number of acoustic events as a function of the 

strain, but not as a function of time.  

The basic creep tests were performed on 

concrete made up of CEM I 52.5 N, a water-to-

cement mass ratio of 0.54, a volume fraction of 

cement paste of 0.292, and a volume fraction of 

sand-lime aggregates of 0.708. 

 The test was started at a material age of 

266 days. The load was first increased to 

24.9 MPa, i.e. the stress-to-28-day-strength 

ratio amounted to some 54%. This was kept 

constant for 87 days. Then the loading was 

increased to 27.3 MPa, i.e. the stress-to-28-day-

strength ratio amounted to some 59%. This was 

kept constant for the following 31 days. 

Thereafter, the loading was increased up to 33.6 

MPa, i.e. stress-to-28-day-strength ratio 

amounted to some  73%. This was kept constant 

for 7 days, see Figure 1, Figure 2, and Figure 3 

for the prescribed levels of stress and the 

measured values of strain and of the number of 

acoustic events, respectively. 

 
Figure 1: Stress history prescribed during the non-
linear creep test by Rossi et al. [1]; taken from [5]. 

 
Figure 2: Strain history measured during the non-
linear creep test by Rossi et al. [1]; taken from [5]. 

 
Figure 3: Number of acoustic events measured 

during the nonlinear creep test by Rossi et al. [1]; 
taken from [5]. 

 

The strength of concrete at the time of 

loading was uncertain. This motivated a 
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sensitivity analysis, denoted by the index k =1, 

2, 3, yielding different hydration degrees 

associated to each strength [5]. Each hydration 

degree refers to a different set of mechanical 

properties (𝐸 … elastic modulus, 𝐸𝑐 … creep 

modulus), as follows [5]: 

- For k = 1, the elastic and creep modulus 

are E = 30.9 GPa and Ec = 190.2 GPa. 

- For k = 2, the elastic and creep modulus 

are E = 31.2 GPa and Ec = 195.4 GPa. 

- For k = 3, the elastic and creep modulus 

are E = 31.6 GPa and Ec = 200.7 GPa. 

3 MICROMECHANICS-BASED 

DAMAGE MECHANICS 

Concrete damaged by diffuse microcracking is 

herein modelled as a two-phase material 

consisting of an uncracked concrete matrix and 

penny-shaped cracks, see Figure 4. The volume 

fraction of the cracks is equal to the sum of their 

volumes, divided by the volume of the 

Representative Volume Element (RVE) of 

concrete: 𝒇𝒄𝒓 =
𝟒𝝅

𝟑
𝝎 𝑿, where X refers to the 

aspect ratio of the penny-shaped cracks, and 𝝎 

refers to Budiansky’s and O’Connell’s [12] 

crack density parameter, defined as 

𝜔 =
𝑁𝑎3

𝑉
,      (1) 

with N as the number of cracks inside a volume 

V, and a as the characteristic crack radius. 

 
Figure 4: Representative Volume Element (RVE) of 

cracked concrete: penny-shaped cracks embedded in 
an uncracked concrete matrix (gray); 2D sketch of a 

3D RVE; adapted from [5]. 

Using the Mori-Tanaka scheme [13] for 

upscaling under consideration of microcrack 

interaction, the stiffness of damaged concrete 

is obtained as  

ℂ𝑑𝑎𝑚 =  ℂ𝑐: [𝕀 +  
4𝜋

3
𝜔𝕋]

−1

,         (2) 

where 𝕀 refers to the symmetric fourth-order 

identity tensor, and 𝕋 to the 𝕋-Tensor 

introduced by Dormieux and Kondo [14] for 

cracks with a vanishing aspect ratio. The  

𝕋-tensor depends on the orientation of the 

cracks. For parallel cracks, 𝕋 =  𝕋 (𝜃, 𝜑), 

where 𝜃 and 𝜑 refer to the zenith and azimuth 

angles of a spherical coordinate system, 

describing the orientation of the normal to the 

microcrack plane. 

3.1 Isotropic crack orientation 

In case of isotropic crack orientations the 

tensor 𝕋 (𝜃, 𝜑) is to be integrated over all 

directions, such that  

𝕋 =  ∫ ∫ 𝕋 (𝜃, 𝜑)
sin 𝜃

4 𝜋
 𝑑𝜑 𝑑𝜃

2𝜋

𝜑=0 

𝜋

𝜃=0
.     (3) 

Thus, the stiffness of damaged concrete, see 

Eqs. (1) and (2), is obtained as  

1

𝐸𝑑𝑎𝑚
=

1

𝐸
 [1 + 𝜔

16 (1−𝜈2)(10−3𝜈)

45(2−𝜈)
] ,    (4) 

and its Poisson’s ratio as  

𝜈𝑑𝑎𝑚 =
45𝜈(2−𝜈)+ 16 𝜈 𝜔 (1−𝜈2)

45(2−𝜈)+16 𝜔 (1−𝜈2)(10−3𝜈)
 .     (5) 

These relations are illustrated in Figure 5 (a) 

and (b), respectively. 
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Figure 5: Relations between (a) the elastic modulus, 
and (b) Poisson's ratio of concrete, as a function of 𝜔 

for an isotropic crack orientation.  

3.2 Axisymmetric crack orientation 

Axisymmetric crack orientation around the 

loading direction have been observed at very 

high load levels of uniaxial compression 

experiments, as failure due to axial splitting is 

triggered. Thus, 𝜃 is set equal to 
𝜋

2
, and the 𝕋-

tensor in Eq. (2) is computed by integrating the 

tensor 𝕋 (𝜃, 𝜑) such that  

𝕋𝑣𝑒𝑟𝑡 =  ∫ 𝕋 (𝜃, 𝜑)
sin 𝜃

4 𝜋
 𝑑𝜑 |

𝜃=
𝜋

2

2𝜋

𝜑=0 
.     (6) 

The elastic modulus in loading direction reads 

as  

1

𝐸𝑑𝑎𝑚,𝑣𝑒𝑟𝑡
=

1

𝐸
,      (7) 

and Poisson’s ratio as  

𝜈𝑑𝑎𝑚,𝑣𝑒𝑟𝑡 = 𝜈.      (8) 

Thus, flat cracks running in loading direction do 

not damage the material’s stiffness in that 

direction. This implies that non-vanishing 

aspect ratios are needed to model damage 

resulting from axisymmetric crack networks. 

3.3 Non-Vanishing Aspect Ratios 

Cracks with non-vanishing aspect ratios 

refer to 𝑋 ≠ 0, yielding a non-vanishing 

volume fraction of cracks. Thus, the damaged 

stiffness of concrete is now found as  

ℂ𝑑𝑎𝑚 =  𝑓
𝑐
ℂ𝑐: [𝑓𝑐𝕀 +  

4𝜋

3
𝜔𝕋𝑣𝑒𝑟𝑡]

−1

,   (9) 

where 𝑓𝑐 denotes the volume fraction of 

uncracked concrete. It is related to the volume 

fraction of the cracks as 𝑓𝑐 = 1 − 𝑓𝑐𝑟. The 

relations between the elastic modulus of 

concrete and the crack density parameter, as 

well as between Poisson’s ratio and the crack 

density parameter, for different values of the 

aspect ratio X, are shown in Figure 6 (a) and (b). 

 

Figure 6: Relations between (a) elastic modulus, and 
(b) Poisson's ratio of concrete and 𝜔 for different 

aspect ratios in an axisymmetric crack orientation.  
 

Figure 6 (a) and (b) show that micro-
cracking with non-vanishing aspect ratios 
results in the increase in Poisson's ratio of 
damaged concrete. This is in qualitative 
agreement with experimental observations 
[15], showing an increase of 𝜈 right before 
compressive failure due to axial splitting.  

3.4 Implications for modelling: 

Introduction of the damage factor γ 

Rossi et al. [1] measured the number of 

cracks, N, created during the nonlinear creep 

test, but crack sizes and orientations could not 

be identified. This provides the motivation to 

introduce a damage factor γ such that the 

expression for the compliance of concrete 

damaged by diffuse microcracking takes the 

form 
1

𝐸𝑑𝑎𝑚
=

1

𝐸
 [1 +

𝑁

𝑉
 𝛾3].           (10) 

with  
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𝛾3 = 𝑎3𝑓(𝜈).          (11) 

In Eq. (11), 𝑎 is a representative crack size and 

𝑓(𝜈) refers to the influence of the unknown 

orientational properties of the crack network on 

the damage of concrete. Eq. (10) emphasizes 

that the creation of a new crack relates to a 

linear increase in the compliance of damaged 

concrete. Given that the crack sizes and 

orientations largely depend on the size, the 

mechanical properties, and the geometrical 

properties of the aggregates, as well as on the 

type of macroscopic loading, the value of the 

damage factor 𝛾3 must be identified for 

different tests. 

4 MICROMECHANICS-INSPIRED 

APPROACH TO NONLINEAR CREEP 

4.1 Linear viscoelasticity informed by 

crack micromechanics 

Linear viscoelasticity relates to the use of the 

superposition principle, which in its uniaxial 

form is expressed as  

𝜀 =  ∫  𝐽 (𝑡 − 𝜏)
𝑑𝜎

𝑑𝜏
𝑑𝜏,

𝑡

−∞ 
            (12) 

where 𝜀 is the strain, 𝐽 is the uniaxial creep 

compliance, 𝜎 is the applied stress, t is the 

time variable resolving the strain 

measurements, and 𝜏 is the time variable 

resolving the stress history.  

The viscoelastic response of the 

hierarchically organized material concrete is 

herein modelled in the framework of continuum 

micromechanics, see Figure 7. Boltzmann’s 

superposition principle, see Eq. (12), can be 

solved for the case of creep of cracked concrete 

by transforming the time-dependent problem 

into the Laplace-Carson space, using the Mori-

Tanaka scheme for penny-shaped cracks 

embedded in an undamaged concrete matrix, 

and back-transforming the results into the time 

domain. Accounting for the relations obtained 

in Section 3, see also [5], this can be written as  

𝐽𝑑𝑎𝑚(𝑡 − 𝜏) =  [1 +
𝑁(𝑡)

𝑉
 𝛾3] 𝐽(𝑡 − 𝜏).  (13) 

 

 
Figure 7: Qualitative properties of the hierarchically 
organized structure of concrete; 2D sketches of 3D 

RVEs of (a) damaged concrete, (b) undamaged 
concrete, (c) cement paste, and (d) hydrate foam; 

taken from [5]. 

4.2 Damage-dependent nonlinear creep  

The nonlinear viscoelastic response of 

damaged concrete is herein described using a 

power-law function for linear creep, in 

combination with (i) a creep reduction factor 

accounting for different levels of time-invariant 

relative humidity, (ii) the affinity parameter [2] 

accounting for nonlinear viscoelasticity, and 

(iii) the new damage factor. This leads to 

𝐽𝑑𝑎𝑚(𝑡 − 𝜏) = [1 +
𝑁

𝑉
𝛾3] {

1

𝐸
+

𝜂 𝑅𝐻

𝐸𝑐
[

𝑡−𝜏

𝑡𝑟𝑒𝑓
]

𝛽

},    

(14) 

where E is the elastic modulus of uncracked 

concrete, 𝐸𝑐 and 𝛽 are its creep modulus and the 

creep exponent modulus of uncracked concrete 

quantified according to the micromechanics 

model of [16,17], 𝑡𝑟𝑒𝑓 = 1 day is a reference 

time, 𝑅𝐻 is the reduction factor accounting for 

relative humidity, see Figure 8, and 𝜂 is the 

affinity parameter which is a function of the 

stress-to-strength ratio, 𝜎/𝜎𝑢𝑙𝑡, as 

𝜂 = 1 + 2 [
𝜎

𝜎𝑢𝑙𝑡
]

4

.      (15) 

 

Figure 8: Creep reduction factor as a function of the 
internal relative humidity of concrete; after [5]. 
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For multilevel nonlinear creep tests, an 

extension of the superposition principle was 

proposed by [18], which for the present model 

is written as  

𝜀(𝑡) = [1 +
𝑁

𝑉
𝛾3] {

𝜎(𝑡)

𝐸
+ ∑ [𝜎𝑖  𝜂𝑖 −𝑛

𝑖=1

𝜎𝑖−1𝜂𝑖−1]
𝜂 𝑅𝐻

𝐸𝑐
[

𝑡−𝑡𝑖

𝑡𝑟𝑒𝑓
]

𝛽

𝐻(𝑡 − 𝑡𝑖)} ,            (16) 

where H refers to the Heaviside function. 

Remarkably, all the coefficients in Eq. (16) are 

known based on the measured data as well as 

the micromechanical models [16,17], except for 

the damage factor 𝛾. It is identified in the 

following. 

4.3 Identification of the damage factor in 

the multistage creep test by Rossi et al. [1]  

The damage factor is identified such that 

Eq. (16) best reproduces the measured data. 

Given that the mechanical properties at the age 

of 266 days, when the test started, are unknown 

(properties were only tested at an age of 

28 days), three different sets of mechanical 

properties were considered, denoted by the 

index k = 1, 2, 3. The optimized damage factors 

obtained were 𝛾1 = 11.7 mm, 𝛾2 = 12.7 mm, 

𝛾3 = 13.6 mm, see Figure 9. 

 
Figure 9: Comparison between the developed model 

and the measured strain; k = 1, 2, 3 refers to the 

uncertainty regarding the strength of the tested concrete; 
taken from [5]. 

5 MICROCRACK CREATION DURING 

CREEP TESTS 

A key input for the development of the 

model is the history of acoustic emissions. It 

was measured during the simulated tests but is 

rarely available for other creep tests. Thus, 

evolution laws for the creation of 

microcracks [5] are herein reported such that 

the model may be applied to and validated with 

additional creep tests in which the creation of 

cracks was not measured. 

For this purpose, two types of diffusely 

created microcracks are identified: microcracks 

created during short-term loading due to an 

increase in the stress, denoted as 𝑁𝜎, and 

microcracks created during sustained loading 

due to progressive creep deformation, denoted 

as 𝑁𝜀. Together, they make up the total number 

of cracks as  

𝑁 = 𝑁𝜎 + 𝑁𝜀 .                (17) 

5.1 Microcracks created during quasi-

instantaneous load application 

The relation between the accumulated number 

of microcracks created during quasi-

instantaneous load application and the stress-to-

strength ratio is obtained by a power-law, see 

also [5], as  

𝑁𝜎 = 𝜋𝑎 [
𝜎

𝜎𝑢𝑙𝑡
]

𝜋𝑏

 ,      (18) 

where 𝝅𝒂 and 𝝅𝒃 were optimized for each set 

of mechanical properties (see index k = 1, 2, 3), 

as 𝝅𝒂= 2021 and 𝝅𝒃 = 3 for k = 1; 𝝅𝒂= 2240 

and 𝝅𝒃 = 3 for k = 2; and 𝝅𝒂= 2474 and 𝝅𝒃 = 3 

for k = 3, see Figure 10. 

 

Figure 10: Accumulated number of microcracks 
during quasi-instantaneous load application;  

taken from [5]. 
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5.2 Microcracks created during sustained 

loading  

During each phase of sustained loading, the 

number of created microcracks increased 

almost linearly with the increasing creep strain, 

with a proportionality factor that increased with 

increasing stress-to-strength ratio, see also [5]. 

This is expressed as  

𝑁(𝑡) − 𝑁(𝑡𝑖
+) = 𝛼𝑖 (

𝜎

𝜎𝑢𝑙𝑡
)  × [𝜀(𝑡) − 𝜀(𝑡𝑖

+)] ,  

    (19) 

where 𝒕𝒊
+ refers to the time instant at the 

beginning of each load step, right after the 

application of the load. The relation between 𝜶𝒊 

and the stress-to-strength ratio was modeled as 

a piecewise linear function. Every piece is 

expressed as  

𝛼 = 𝜋𝑐 [
𝜎

𝜎𝑢𝑙𝑡
] + 𝜋𝑑,      (20) 

where 𝜋𝑐 and 𝜋𝑑 were optimized independently 

for three intervals of the stress-to-strength ratio, 

namely (a) 
𝜎

𝜎𝑢𝑙𝑡
≤ (

𝜎

𝜎𝑢𝑙𝑡
)

𝐼
; (b) (

𝜎

𝜎𝑢𝑙𝑡
)

𝐼
≤

𝜎

𝜎𝑢𝑙𝑡
≤

(
𝜎

𝜎𝑢𝑙𝑡
)

𝐼𝐼
, referring to the limit of applicability of 

the affinity concept; and (c) 
𝜎

𝜎𝑢𝑙𝑡
> (

𝜎

𝜎𝑢𝑙𝑡
)

𝐼𝐼
, 

referring to values beyond the limit of 

applicability of the affinity concept, see also 

[5]. The optimized values of  𝜋𝑐 , 𝜋𝑑,  (
𝜎

𝜎𝑢𝑙𝑡
)

𝐼
, 

and (
𝜎

𝜎𝑢𝑙𝑡
)

𝐼𝐼
 also depend on the set of 

mechanical properties, k =1, 2, 3, as: 

- For k = 1, (
𝜎

𝜎𝑢𝑙𝑡
)

𝐼
 = 0.55, (

𝜎

𝜎𝑢𝑙𝑡
)

𝐼𝐼
= 0.76: 

𝜋𝑐 = 0 and 𝜋𝑑 = 0 for interval (a),  

𝜋𝑐 = 3.178 × 106 and 𝜋𝑑 = −1.739 ×
106 for interval (b), and 𝜋𝑐 = 102.8 ×
106 and 𝜋𝑑 = −77.01 × 106 for 

interval (c), see the red dashed line of 

Figure 11. 

- For k = 2, (
𝜎

𝜎𝑢𝑙𝑡
)

𝐼
 = 0.53, (

𝜎

𝜎𝑢𝑙𝑡
)

𝐼𝐼
= 0.73: 

𝜋𝑐 = 0 and 𝜋𝑑 = 0 for interval (a),  

𝜋𝑐 = 3.289 × 106 and 𝜋𝑑 = −1.739 ×
106 for interval (b), and 𝜋𝑐 = 106.3 ×
106 and 𝜋𝑑 = −77.01 × 106 for 

interval (c), see the green dashed-dotted 

line of Figure 11. 

- For k = 3, (
𝜎

𝜎𝑢𝑙𝑡
)

𝐼
 = 0.51, (

𝜎

𝜎𝑢𝑙𝑡
)

𝐼𝐼
= 0.71: 

𝜋𝑐 = 0 and 𝜋𝑑 = 0 for interval (a),  

𝜋𝑐 = 3.400 × 106 and 𝜋𝑑 = −1.739 ×
106 for interval (b), and 𝜋𝑐 = 109.9 ×
106 and 𝜋𝑑 = −77.01 × 106 for 

interval (c), see the blue solid line of 

Figure 11. 

 
Figure 11: Relation between the slope 𝛼𝑖 and the 

stress-to-strength ratio; taken from [5]. 

The number of cracks accumulated during the 

whole multistage creep test can then be 

calculated, see also [5], as  

𝑁𝜀 =  ∆𝑁𝑖 +  ∑ ∆𝑁𝑗  𝑖−1
𝑗=1 , 𝑡𝑖

+ ≤ 𝑡 ≤ 𝑡𝑖+1
− , 𝑖 > 1.  

    (21) 

6 MODEL VALIDATION 

The developed nonlinear creep model was 

validated in [5] by predicting the strain 

evolution of two independent tests on concrete 

of the same composition as that tested by Rossi 

et al. [1], see [19], as well as by simulating and 

identifying the damage factor for two tests by 

Kammouna et al. [20]. In the following two 

subsections, two further sets of tests are 

analyzed.  

6.1 Tests on CEM I Concrete 

Herein, the tests by Ranaivamonana et al. 

[21] are analyzed. A sensitivity analysis 

regarding uncertainties on the strength of 

concrete at the time of testing was performed, 

yielding three sets of mechanical properties k = 

1, 2, 3. The mechanical properties obtained 
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using the micromechanical model were then as 

follows: 

- For k = 1, 𝜎𝑢𝑙𝑡 = 61.6 MPa, E = 42.1 

GPa, Ec = 278.2 GPa, 𝛽 = 0.25. The 

damage factor was then optimized as 𝛾 

= 7.0 mm, see the red dashed curve in 

Figure 12. 

- For k = 2, 𝜎𝑢𝑙𝑡 = 64.6 MPa, E = 42.6 

GPa, Ec = 286.7 GPa, 𝛽 = 0.25. The 

damage factor was then optimized as 𝛾 

= 7.4 mm, see the green dashed-dotted 

curve Figure 12. 

- For k = 3, 𝜎𝑢𝑙𝑡 = 67.7 MPa, E = 43.1 

GPa, Ec = 294.4 GPa, 𝛽 = 0.25. The 

damage factor was then optimized as 𝛾 

= 7.6 mm, see the blue solid curve in 

Figure 12. 

 
Figure 12: Simulation of the compressive strain 

evolution in the single-step tests on CEM I concrete 
by Ranaivomanana et al. [21]: the red, green, and 
blue graphs refer to k = 1, 2, and 3, respectively. 

The results shown in Figure 12 underline that 

the described model is capable of simulating the 

tests of Ranaivomanana et al. [21] accurately. 

The first test, at a low stress-to-strength ratio, 

refers to linear creep, and serves to check the 

validity of the micromechanical model. The 

second test, at a moderately large stress-to-

strength ratio, refers to a nonlinear viscoelastic 

test, and checks the validity of the affinity 

concept. 

6.2 Tests on CEM II Concrete 

Herein, the tests by Dummer et al. [22] are 

analyzed. The reported mean and standard 

deviations of a set of measurements are 

compared with simulations of the individual 

tests (several curves of Figure 13 refer to one 

mean and standard deviation). The elastic 

modulus of uncracked concrete was measured 

at the time of testing: E = 30.3 GPa. The creep 

modulus was determined in [11]: Ec = 103.1 

GPa. In addition, 𝛽 = 0.25. Uncertainties refer 

to the strength of concrete: 

- For k = 1, 𝜎𝑢𝑙𝑡 = 29.7 MPa, and the 

optimal damage factor is quantified as 

𝛾 = 8.4 mm, see the red dashed curve in 

Figure 13. 

- For k = 2, 𝜎𝑢𝑙𝑡 = 31.8 MPa, and the 

optimal damage factor is quantified as  

𝛾 = 9.2 mm, see the green dashed-dotted 

curve in Figure 13. 

- For k = 3, 𝜎𝑢𝑙𝑡 = 33.9 MPa, and the 

optimal damage factor is quantified as 

𝛾 = 10.1 mm, see the blue solid curve in 

Figure 13. 

 
Figure 13: Simulation of the compressive strain 

evolution in the single-step tests on CEM II concrete 
by Dummer et al. [22]: the red, green, and blue 

graphs refer to k = 1, 2, and 3, respectively. 

 

The first set of tests, at low stress-to-strength 

ratios, serves to check whether the linear model 

is accurate. The second set of tests, at high 

stress-to-strength ratios, serves to validate the 

damage factor and the model proposed. The 

results confirm that the model may be 

applicable even to CEM II concretes, and 

provide motivation to verify, as an outlook, the 

applicability of the model also on concretes 

made up of other types of supplementary 

cementitious materials, see e.g. [23]. 

7 CONCLUSIONS 

• The proposed model was successfully 

validated with sets of tests on CEM I 

and CEM II concretes at low, moderate, 
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and high stress-to-strength ratios.  

• The number of cracks created are 

directly proportional to damage of 

concrete and linearly increase the 

compliance of concrete. 

• The value of the damage factor is 

independent of the applied stress-to-

strength ratio, as long as diffuse 

microcracking is realistic, and large 

cracks have not yet propagated. 

• The origin of nonlinear creep is herein 

related to nonlinear viscoelastic 

phenomena, dominating at low and 

moderate stress levels, combined with 

microcracking-induced damage, 

governing the increase of deformation 

at large stress levels. 
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