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Abstract. The behaviour of concrete is greatly influenced by its internal composition. Unlike brit-
tle materials, concrete and other quasi-brittle materials have a larger fracture process zone due to
the presence of microcracks. Traditional analysis methods may fail to account for the effects of its
heterogeneous structure. Experimentally, this heterogeneity results in variabilities in the global re-
sponse, such as peak load and post-peak behaviour. To address this, we propose a novel cohesive
phase field model for analyzing quasi-brittle fractures in concrete, treating the material behaviour as
a generalized continuum. This model considers the deformation of the material’s internal structure
at the continuum level, assuming it can undergo finite rigid rotation, characteristic of a micropolar
continuum. This framework can be extended to more complex behaviours such as micro stretch and
micromorphic continuum. The model’s elastic response is insensitive to the smoothing length scale,
which is introduced to approximate the sharp crack topology with a continuous scalar field variable.
Our model introduces additional length scales related to bending and torsional rigidity, allowing for
a better representation of size-dependent effects in concrete. We demonstrate the impact of various
parameters in our formulation on matching experimental data. The variation of these parameters high-
lights the variations in internal structure, offering insights into how the additional parameters relate to
the material’s varying internal structure.

1 INTRODUCTION

Concrete is a prevalent material in construc-
tion engineering due to its ease of casting and
strength development over time through hydra-
tion. It is a composite primarily composed of
cement, sand, aggregate, and water. Our fo-
cus is on hardened concrete, which is consid-
ered to be in two phases: mortar and aggre-
gate. In continuum damage models, concrete is
typically treated as homogeneous and isotropic.
However, variations in the constituent phases

lead to differences in the mechanical properties
of concrete. The behaviour of aggregates dur-
ing concrete deformation can significantly in-
fluence the overall response, a factor often ne-
glected in traditional continuum models.

One such approach that incorporates the ef-
fects of inner structure at the continuum level
is the micropolar continuum model [[1]. This
model introduces additional degrees of free-
dom in the form of micro rotations alongside
the classical translational degrees of freedom.
These rotations are attributed to the deforma-
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tion of the inner structure, which is assumed to
have independent rotations distinct from those
captured by the rotation appearing from the
polar decomposition of the deformation gradi-
ent in classical continuum mechanics. While
more general models exist, such as the micro
stretch continuum [2]], which allows for stretch-
ing while maintaining rotational orthogonality,
or the micromorphic continuum [3]], which al-
lows both stretching and breaking of rotational
orthogonality, our study focuses on the microp-
olar continuum with finite rotation.

To model the degradation mechanism in con-
crete, we employ the cohesive phase field model
(PFM) [4]. The PFM model for fracture is
highly popular due to its ability to treat the
problem as an energy minimization problem.
The crack path emerges as part of the solution
to the governing partial differential equation
(PDE) in a scalar variable known as the phase
field, which ranges continuously from 0 (fully
damaged) to 1 (intact). A diffusing length scale
is introduced to facilitate the transition from a
sharp crack to an intact phase. Specifically, we
use the cohesive PFM for the micropolar con-
tinuum as proposed by [4] for representing con-
crete fracture. However, Unlike the cited work,
we assume the material can undergo finite rota-
tions rather than infinitesimal ones. The reason
is that the presence of a higher gradient near
the damaged surface might lead to finite rota-
tion. A key feature of this model is that the
elastic response is insensitive to the diffusing
length scale in the PFM. However, the length
scale must be small enough to resolve the crack.

In this study, we first introduce the govern-
ing equations for the PFM applied to a microp-
olar continuum experiencing finite rotation. We
then examine the impact of two additional pa-
rameters—micropolar ratio and bending length
scale—on the behaviour of a 2D concrete spec-
imen undergoing damage using a specific St.
Venant-Kirchhoff type of energy. A micropolar
ratio of O corresponds to a linear elastic case. In
contrast, a ratio of 1 aligns with couple stress
theory [5]] where the relative rotation between
the inner structure and macrostructure vanishes

[6]. The bending length scale is associated with
rigidity against bending, meaning that a higher
bending length scale results in lower microrota-
tion values. After showing the role of various
parameters, we conclude the study with a sum-
mary and future scope.

2 Formulation

In this section, we introduce the kinemat-
ics associated with the micropolar continuum,
along with the strain measures and conjugate
stresses. We also present the governing equa-
tion subsequently.

2.1 Kinematics

Let us consider a solid body undergoing fi-
nite deformation. We consider a subset of un-
deformed configuration denoted by €2. With the
boundary denoted by I' = I'y U I'y. I'y and
['y correspond to the Dirichlet and Neumann
boundary, respectively. Following the standard
continuum mechanics, we denote the compo-
nents of material points in the deformed and
undeformed configuration by z; and X, respec-
tively, where 7 = 1,2, 3. Deformation gradient

is defined as Fj; = %. Let us denote the mi-
J

crorotation tensor by Rw we define the strain
measures as [7]]

Eij = RyUyj — 0y (1)

and R
A 1 . OR,,;
Kip = _§5iijmjan] 2)
Where Eij and K, represent the biot-like trans-
lation and curvature tensor.

2.2 Kinetics

The assumption of the micropolar continuum
introduces a couple stress along with the classi-
cal force stress. Let us denote the elastic energy
density as 1°*, which depends on the strain
measures, and define the force stress and cou-
ple stress as

awelas
Sy = — 3
Y (3)
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2.3 Balance Laws

The total energy in the phase field model
consists of two parts, namely elastic and frac-
ture. For the micropolar continuum undergoing
finite rotation, it has the following form

welas _ ,(;elas(‘EZ]7 K ) (5)

and )
g = (s, g;) (©)

where we have represented the gradient of the

> as g;.

By taking the energy variation, we can ar-
rive at the governing equations. The balance of
linear momentum has the form (neglecting the
body force and body couple)

phase field variable, <

O(RiSij)
Aik2k) _ o o0
X, 0, on )

RikSkjnj = ti, on FN
The balance of angular momentum is

A(R; kKS%;)

cT
aX] +8Z]k(RSF )

;i =0,0on{2
(8)

RikSzjnj =t;,onl'y
where ¢; and t{, represent the components of
force traction and couple traction, respectively.

The governing equation corresponding to
damage is

frac
° ((w ) Ly o

0X;. \ Oy Ds

One can notice that, unlike the classical contin-
uum, angular momentum balance doesn’t result
in symmetry of the Cauchy stress tensor. Thus,
it also needs to be solved to characterize the de-
formation completely.

3 Numerical Implementation

For the purpose of numerical implementa-
tion, we have taken the specialized form of en-

ergy density as

O = g () (B (Eg )i+
Lhe (Eskew) (Eskew)lj_F

K~ WA .
5(5) o K Kiy)

(10)
and

3 3l
wfrac — (8[(1 — 3) -+ 3 gzgz) . (11)

The governing equation corresponding to the
damage can be rewritten as,

0
0X,;

<312gz) g(s)T +§ =0. (12

The constant yi. and 7y can be defined in terms of
micropolar ratio (V) and bending length scale

(Iy) as

b=\l1G (13a)
v = 4G} (13b)
\112
= 1
pe =1 g2C (13¢)

We have used the split proposed by [8]] and
define the part of the strain energy density con-
tributing to damage as

T = w(E))ig (B )i + pe(B™) i (B
K, Yoo
+5{(B)e) + 5 KKy
(14)
where (s). = § (o + o]

Where J = / is the degrading nondimen-
sionalized strain energy density. To ensure the
initial elastic limit, the cohesive fracture model
should possess a threshold; therefore, follow-
ing [4], we introduce the history function as

H = max] (jcm ( J

I 1)+) . (15)

We write the modified governing equation cor-
responding to damage as

o (3 3
X, (—l gl> g (s)H + g=0 (6
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The governing equation has been solved in the
framework of the hybrid method proposed by
[9]. The update of the displacement, phase
field and rotation field has been done similarly
to [10].

4 Numerical Examples

To show the applicability of the phase field
model for the micropolar continuum, we repro-
duce the experimental load-displacement plot
and also study the effect of the parameters ¥
and [, on the load-displacement response of
concrete specimens.

4.1 Hoover Test

We validate our model by reproducing the
experimental load-displacement curve reported
in the experimental study done by [11]. The
geometry of the problem is shown in Figure
[[] The material properties has been taken as
E = 41000 Mpa, G, = 0.05 N/mm, v = 0.17
Yerie = 0.00024 N/mm?.
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Figure 1: Geometry and boundary conditions of the
Hoover test specimen (All dimensions are in mm).

We compare the model’s behaviour without
micropolar effects with experimental data in the
first simulation. The load was applied in the
form of incremental displacement of 1 x 1073
mm per increment till it reached 0.08 mm ap-
plied displacement. Figure [2] illustrates the
predicted crack path at this final displacement,
demonstrating good agreement with experimen-
tal observations.

00 02 04 0.6 08 1.0

-l \ \ l-\

Figure 2: Phase field contour at the applied displacement
of 0.08 mm

We also compare the load-displacement re-
sponse obtained using the numerical simula-
tion in this study with the experimental plot.
It shows that the model can predict peak load
within the experimental band. We also notice
the insensitivity of the model to the length scale
{ = 0.85 mm and [ = 1.05 mm, attached to
the gradient of the phase field. This feature en-
ables the exploration of micropolar continuum
parameters on macroscopic responses. We refer
to [4] for further details on length scale insensi-
tivity.
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Figure 3: Comparison of load-displacement plot obtained
in this study using two different phase field length scale

4.2 Effect of micropolar ratio ¥

To examine the role of parameters of microp-
olar continua, we revisit the problem from the
previous section. We maintain a constant bend-
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ing length scale [, as 0.01 mm and vary the mi-
cropolar ratio. All other material parameters
and loading conditions remain identical to those
in the previous section.
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Figure 4: Comparison of load-displacement curve for mi-
cropolar ratios of 0.2, 0.5 and 0.8.

Figure {] shows the load vs cod plot for three
cases of U i.e. 0.2,0.5 and 0.8. We observe that
the micropolar ratio has a negligible effect on
the load-displacement response. This outcome
is anticipated, as rotations — primarily induced
by shear stress components — are insignificant
under mode I loading conditions.

4.3 Effect of bending length scale

We consider the same problem as considered
in the previous section. We fix the micropo-
lar ratio ¥ as 0.01 mm and vary the bending
length scale. All other material parameters and
the loading condition are similar to those in the
previous section.
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Figure 5: Comparison of load displacement curve for
bending length scale of 0.01, 0.1 and 0.3 mm.

Figure [5|shows the load vs cod plot for three
cases of [, i.e. 0.01,0.1 and 0.3. We observe
that the bending length scale modifies the peak
load. Specifically, peak load increases with the
increase in the value of [,. From the mesoscale
perspective, it has been observed that peak load
is modified due to the arrangement of the aggre-
gates [12].

5 Conclusion

This study introduces a phase field model for
micropolar continua capable of finite rotation of
inner structure. We derive governing equations
for general finite deformations and employ St.
Venant-Kirchhoff constitutive relations for con-
crete. We recognise their suitability for this ma-
terial compared to other material models, such
as Neo-Hookean models better suited for plastic
and rubber-type materials. We apply the model
to a concrete boundary value problem, demon-
strating its applicability to quasi-brittle materi-
als. Parametric studies reveal that micropolar
parameters effectively capture the influence of
the material’s microstructure, such as aggregate
in concrete, and can shed light on experimental
scatter arising from mesoscale or microscopic
uncertainties. While this work focuses on Mode
I fracture, future research should investigate
mixed-mode fracture behaviour. Additionally,
the model’s inherent additional length scale pa-
rameter offers the potential for more accurate
modelling of size-dependent phenomena.
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