
12th International Conference on Fracture Mechanics of Concrete and Concrete Structures
FraMCoS-12

B.L.A. Pichler, Ch. Hellmich, P. Preinstorfer (Eds)

FRACTURE MECHANICS-BASED MODEL FOR THE FLEXURAL
BEHAVIOR OF STEEL FIBER-REINFORCED CONCRETE WITH

LONGITUDINAL REINFORCEMENT
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Abstract. This study introduces an analytical model to evaluate the flexural strength of concrete
sections with longitudinal reinforcement and steel fibers based on Fracture Mechanics principles. It
combines the compressive behavior model from Eurocode 2 with the tensile softening model from
Model Code 2010 to accurately simulate the compressive and tensile responses of concrete. The
model adopts a parabolic-linear stress-strain relationship for compression and a linear softening law
for tension under the flat crack hypothesis. By ensuring compatibility between crack openings and
reinforcement elongation, it facilitates precise analyses of stress distribution and fracture depth. The
results highlight significant size effects governed by the brittleness number, which accounts for el-
ement size, tensile softening, and residual flexural strength. This model provides a practical and
reliable tool for predicting the flexural behavior of concrete configurations with low longitudinal re-
inforcement ratios.

1 INTRODUCTION

The post-cracking behavior of steel fiber re-
inforced concrete elements results from the in-
teraction between the stress-crack opening rela-
tionship in the tensile zone and the stress-strain
response in the compression zone [1]. The
fibers’ bridging action plays a key role in duc-
tile behavior by stitching crack faces together
after cracking [2]. The size effect in concrete,
particularly the fracture process zone (FPZ) [3],

is influenced by fiber inclusion, which extends
the FPZ [4,5]. Two models, the Fictitious Crack
Model and the Smeared Crack Band Model, ef-
fectively describe the post-cracking softening
behavior and residual strength [4,6]. The size of
the Fracture Process Zone (FPZ), which plays
a crucial role in load capacity calculations, is
influenced by the material’s heterogeneity and
energy dissipation mechanisms [7,8]. Addition-
ally, the presence of steel fibers alters the devel-
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opment of the FPZ by modifying the material’s
properties [9, 10].

This study introduces an analytical model for
evaluating the flexural behavior of reinforced
concrete with longitudinal reinforcement and
steel fibers. The model integrates Eurocode
2 for compressive response and Model Code
2010 for tensile softening [11]. It uses a lin-
ear stress-crack opening softening law, incor-
porating compatibility equations to link crack
opening with reinforcement elongation [12].
The model accurately represents bending per-
formance, crack propagation, and stress distri-
bution, providing a reliable tool for structural
design and failure analysis.

2 INITIAL SPECIFICATIONS
This framework outlines a sectional analysis

model for evaluating the impact of a low lon-
gitudinal reinforcement ratio and steel fibers on
concrete’s flexural behavior:

• Hybrid reinforcement effectiveness:
Combines longitudinal bars and steel
fibers for enhanced crack control under
flexural loads.

• Parabolic-linear compression model:
Captures pre- and post-peak compressive
behavior, as defined in Eurocode 2 [13],
accurately representing the ductility of
the compressive zone.

• Flexural strength and ductility: Influ-
enced by material ductility, reinforcement
ratio, ρ, adhesion η, and brittleness num-
ber, βH,f , with specific practical ranges
for steel-fiber concrete.

• Minimum reinforcement requirements:
Eurocode 2 [13] mandates minimum lon-
gitudinal reinforcement for crack control,
even with steel fibers.

• Size effects and Fracture Mechanics:
Crack propagation is affected by the size,
the cover thickness, the reinforcement ad-
hesion, and the fracture process zone.

• Model scope: Applies to crack widths
w ≤ wu = 2.5 mm (wu is the the ultimate
crack value), covering flexural strength
classes 1–8 a/b, and uses the softening
law from Eurocode 2 [13].

• Critical section depth: Defines critical
cover thickness to prevent premature re-
inforcement fracture and ensure load-
bearing capacity.

2.1 Criteria for failure and plastic defor-
mation rotation

In a rectangular steel-fiber reinforced con-
crete section, bending deformation occurs at the
section’s center, where the bending moment is
highest (M = P L

4
). Failure is marked by the

formation of a dominant flexural crack, occur-
ring when the crack opening reaches a critical
value, wc, or the strain in the upper compressed
fiber exceeds its maximum limit, ϵcu.

The horizontal displacement in the compres-
sion zone, ∆c, can be determined from the
strain distribution along the longitudinal direc-
tion [2] and is related with the rotation angle of
the section’s axis, given by Eq. (1):

dθ ≈ ∆c

2c
(1)

The crack opening, w, is expressed by
Eq. (2) and is related to the rotation by Eq. (3):

dw = 2 [dθ (h− c)] (2)

w = 2 θ (h− c) (3)

being h the eight of the section of the struc-
tural element and c the depth of the neutral fiber
from the upper face of the structural element.
The strain in the upper compressed fiber and the
crack mouth opening at the lower fiber are re-
lated by Eq. (4):

ϵc =
2∆c

L
=

2wc

L(h− c)
(4)

being L the length of the structural element.
For longitudinal reinforcement, failure occurs
when either the maximum strain in the steel,
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εsu, or in the concrete, εcu, is reached. The
strain in the steel bar, εs, is given by Eq. (5):

εs =
2∆ls
lb

(5)

where ∆ls represents the elongation of the
steel bar and lb its length. For the failure mode,
the relationship between the critical crack open-
ing wc and section rotation is given by Eq. (6):

tan θ =
wc

2(z − d)
≈ θ =

wc

2(z − d)
(6)

In dimensionless terms (Eq. (7)):

θ =
w∗

c

2(ξ − ζ)
(7)

where z is the crack depth at which stress
transmission occurs, ξ is the dimensionless
crack depth, d is the cover rebar, and ζ = d/h
represents the dimensionless cover rebar.

Figure 1 depicts the failure behavior of a
concrete beam section with longitudinal rein-
forcement and steel fibers under a three-point
bending load, assessing the rotational capacity
and correlating each critical crack opening, wc,
with the beam’s rotation, as defined in Eq. (6).
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Figure 1: Mode of failure in a concrete beam with longi-
tudinal reinforcement and steel fibers subjected to a three-
point bending test.

2.2 Stress allocation within the ligament of
the structural component

The post-cracking behavior of the structural
element is determined by the material’s stress-
strain response under bending and the stress-
crack opening relationship after crack initi-
ation [1]. Figure 2 shows the stress-strain
distribution in the ligament under three-point
bending, with stress-strain in compression and
stress-crack opening in tension. The compres-
sive stress distribution in the uncracked region,
before and after peak compression, is defined
by the dimensionless stress-strain model σ − ϵ,
proposed by Ruiz et al. [14], and adopted in Eu-
rocode 2 [13].
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Figure 2: Non-dimensional model for the bending re-
sponse of steel fiber-reinforced concrete (modified from
Ruiz et al. [16]).

3 HYPOTHESES FOR SIMULATING
CRACK GROWTH BEHAVIOR

Two hypotheses are required: one for the
uncracked zone and another for the cracked
zone, depending on whether the material’s ten-
sile strength has been reached.

3.1 Uncracked zone
In the uncracked region, tension follows

a linear elastic stress-strain relationship, with
Navier’s plane section hypothesis for compat-
ibility. For compression, the model uses the
stress-strain relation for steel fiber-reinforced
concrete from Annex L of Eurocode 2 [13]. Al-
ternatively, a parabolic-rectangular stress distri-
bution is proposed, reaching maximum com-
pressive strength at the centroid of the stress
block. Compressive failure is prevented due to
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the fibers’ energy absorption, rotation, and duc-
tility in the compression zone, even as the crack
approaches the element’s edge.

3.2 Cracked zone
3.2.1 Role of steel fiber reinforcement in

tension

In the cohesive model for post-cracking
behavior of steel-fiber reinforced concrete, a
linear stress-crack mouth opening relation-
ship, σ − w, is proposed for uniaxial tension
(Fig. 3) [11]. The post-cracking flexural resid-
ual strengths fFts and fFtu (fFts is the post-
cracking flexural residual strength for the crack
opening limit state in service, and fFtu is the
post-cracking flexural residual strength for ulti-
mate crack opening limit state):

fFts = 0.45 fR1 (8)

fFtu = fFts −
wu

CMOD3

(fFts − 0.5 fR3 + 0.2 fR1)

= 0.5 fR3 − 0.2 fR1

(9)
where fR1 is the flexural residual strength for

a crack mouth opening value equal to 0.5 mm
and fR3 is the flexural residual strength for a
crack mouth opening value equal to 2.5 mm.
The crack opening, w, is given by Eq. (21):

w =
fFts − σ

fFts − fFtu

wu (10)

The fracture energy, GF,f , is calculated by
Eq. (11):

GF,f =
fFts + fFtu

2
wu; wu =

2GF,f

fFts + fFtu
(11)

In the uncracked zone, the plane sections
hypothesis is applied for compatibility. Crack
propagation begins just before maximum stress
and continues with softening. Fiber reinforce-
ment affects the softening response, and the
crack profile remains planar after the propor-
tional limit, leading to a linear stress profile
across the cohesive bond in the element.

σ

w

fFtu

fFts

wu
Figure 3: A simplified representation of the post-
cracking softening behavior for steel-fiber reinforced
concrete is presented in [11].

3.2.2 Role of longitudinal steel reinforce-
ment in tension

The inclusion of longitudinal steel reinforce-
ment in the concrete section introduces an addi-
tional tensile force, Ts, given by Eq. (12):

Ts = Asσs (12)

where As is the area of the steel reinforce-
ment, σs the stress in the steel, and ρ the re-
inforcement ratio (ρ = As

bh
, b is the width of

the section of the structural element). This
stress is represented in dimensionless form as
σ∗
s = σs

fFTS
, simplifying calculations for crack

propagation and section behavior.
The force equilibrium in the section is ad-

justed to include Ts, affecting the depth of the
compression zone and the moment capacity of
the section, as expressed by Eq. (13):

Ts

bhfFTS

= ρσ∗
s (13)

The depth of the compression resultant is de-
termined from force equilibrium, and the mo-
ment at a given crack depth is expressed as the
dimensionless value M∗ = M

bh2fFTS
.

The model links the steel strain in the crack
zone to the crack width w. Assuming bar elon-
gation corresponds to half the crack opening,
the elongation, ∆l, is calculated using the shear
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stress between steel and concrete and the bar
perimeter, τc, (see Fig. 1). The dimensionless
steel stress is derived by substituting into the
equilibrium equations, introducing η, a bond-
related parameter that adjusts stress transfer
from steel to concrete, defined as Eq. (14) [12]:

η =

√
Es

Ec

τc
fFTS

pe ℓch
As

(14)

where Es and Ec are the moduli of elastic-
ity of steel and concrete, respectively, τc is the
shear stress at the interface between steel and
concrete, and pe is the perimeter of the longitu-
dinal steel reinforcement. An elastic-perfectly
plastic behavior is assumed for the steel rebar.

3.2.3 Role of steel fiber reinforcement in
compression

To analyze the complete flexural response
of steel fiber-reinforced concrete structural ele-
ments, it is essential to incorporate a model that
accurately represents the behavior of the com-
pressed zone within the section. We apply the
model proposed by Ruiz et al. [14,15], included
in Annex L of Eurocode 2 [13], as shown in
Fig. 4.

According to Eurocode 2 [13], other ideal-
ized stress-strain relationships may be applied
if they adequately represent the behavior of the
concrete. The parabolic-linear model for steel
fiber-reinforced concrete characterizes the com-
pressive behavior before and after peak load.
Initially, a parabolic segment describes the ma-
terial’s response up to maximum compressive
strength, transitioning into a linear or rectangu-
lar softening phase. This approach, known as
the parabolic-rectangle model, is ideal for sec-
tional analysis, as it captures the ductile behav-
ior in the compressive zone, improving load-
bearing predictions and crack control. The
model assumes that the steel reinforcement re-
mains within its elastic range, avoiding plastic
deformation effects.

Figure 4: A dimensionless model describing the com-
pressive behavior of SFRC is discussed in [13–15].

3.2.4 Crack propagation

A rectangular concrete section with height h
and width b, reinforced with longitudinal steel
bars and steel fibers, is considered under crack
progression conditions. The damage process
zone develops at the crack tip, reflecting the
quasi-brittle behavior of concrete. Fig. 5 shows
the section subjected to a three-point bending
test.

The parameters are defined as follows:

• h: height of the section.

• b: width of the section.

• z: crack depth at which stress transmis-
sion occurs.

• z0: tension-free crack depth.

• y: neutral axis depth (from bottom face).

• c′: depth from maximum compressive
stress to the neutral axis.

• d: concrete cover over steel reinforce-
ment (d = 0.1h).

The geometric dimensions are normalized by
dividing by h (section height):

• ξ = z
h

: dimensionless crack depth.
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• ξ0 =
z0
h

: dimensionless tensile-free crack
depth.

• γ = y
h

: dimensionless neutral axis depth
(from bottom fiber).

• δ = c
h

: dimensionless neutral axis depth
(from top fiber).

• ρ = c′

h
: dimensionless depth from max

compressive stress to neutral axis.

• µ = d
h

: dimensionless depth from top
fiber to max compressive stress.

• ζ = d
h

: dimensionless cover.

The crack opening is also dimensionless,
w∗ = w

wu
. The tensile and compressive stresses

at the bottom and top fibers are denoted σt and
σc, respectively, and are normalized as σ∗

t =
σt

fFts
and σ∗

c = σc

fFts
.

The crack propagation is divided into two
situations:

• Situation 1: w < wu (Fig. 5(a), 5(b)).

• Situation 2: w > wu (tension-free crack,
Fig. 5(c)).

In Situation 1, the crack depth at the critical
opening z0 increases monotonically. Two cases
are considered:

• Case a: ϵc < ϵc1 = 0.0025, and crack
opening w < wu.

• Case b: ϵc > ϵc1 but ϵc < ϵcu = 0.006,
and crack opening w ≤ wu.

The maximum bending moment is reached
when strain is below or above the concrete’s
compressive strength, depending on material
properties and crack opening behavior. The
ductility provided by fibers ensures that the
maximum moment occurs after reaching the
post-peak region if crack opening is large.

c

h
z y

σc

fFts

fFtu

fcm

d

(b)

c´

Ts

z0

z y

h

c

σc

fcm

fFts

fFtu d

(c)

c´

Ts

z y

c

hfFts

σt

σc

d

(a)

Ts

Figure 5: Ssimplified model for the softening behav-
ior after cracking in a steel-fiber reinforced concrete sec-
tion [11].

3.3 Situation 1 and case b: ϵc1 ≤ ϵc ≤ ϵcu,
w ≤ wu

The objective of this research is to develop a
model for cases in which the compression zone
reaches the ultimate limit state. The ultimate
limit state is defined by the maximum compres-
sive strain in the upper fiber, ϵc = 0.006, and
a maximum crack opening in the lower fiber,
w = 2.5mm. Additionally, the yield strain ϵy =
0.002 and ultimate fracture strain ϵs = 0.01 for
the longitudinal steel reinforcement are speci-
fied. A compatibility equation is introduced to
relate crack opening to the elongation of the re-
inforcement bar.

The model considers a linear-rectangular
distribution of compressive stresses within the
compression zone, reaching the concrete’s com-
pressive strength, fcm. The dimensionless com-
pressive strength f ∗

cm is defined as fcm/fFts,
with the resultant compressive force at the
centroid of this distribution. The equilibrium
equation for horizontal forces is expressed by
Eq. (15):
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∑
Fh = 0 :

f ∗
cm fFts h δ b

− f ∗
cm fFts

2
(h− h ξ − h δ) b

− 1

2
(σ∗

t fFts + fFts)h ξ b

− σsAs = 0
(15)

In a dimensionless way, Eq. (15) is Eq. (16):

f ∗
cm = γ − 1 +

γ + σ∗
t ξ + 2σ∗

s ρ

f ∗
cm

(16)

The bending moment is determined from
moment equilibrium by Eq. (17):

∑
M = 0 :

fcm h δ b−
(
h− h ξ − h δ

2

)
+

fcm
3

(h− h ξ − h δ)2 b+

fFts

3
(h ξ − h γ)2 b+(

fFts + σt

2

)
h γ[

h ξ − h γ +

(
h γ(fFts + 2σt)

3(fFts + σb)

)]
b+

σsAs(h ξ − d)
(17)

And expressed in a dimensionless format
(Eq. (18)):

M∗ = f ∗
cm δ

(
1− ξ − δ

2

)
+

f ∗
cm

3
(1− ξ − δ)2 b

+
1

3
(γ − ξ)2+(

1 + σt

2

)
ξ

[
γ − ξ

(
2 + σ∗

t

3(1 + σ∗
b )

)]
+

σs ρ(ξ − d)
(18)

The first compatibility equation follows
Navier’s hypothesis (Eq. (20)):

fcm
h− h ξ − h δ

=
fFts

h ξ − h γ
(19)

In a dimensionless way, Eq. (19) is Eq. (20):

γ =
1− h δ + f ∗

cm ξ

f ∗
cm + 1

(20)

The second compatibility equation is related
to the crack width w (Eq. (21)).

w(M, z) = w(σt) =
24M

bh2Ec

zf(ξ) =
fFts − σ

fFts − fFtu

wu

(21)
The dimensionless crack width on the lower

face of the section, w∗, is expressed by Eq. (22):

w∗ = 12M∗ βH,f ξ f(ξ)

(
1

1− α

)
(22)

The dimensionless stress on the lower face
of the section, σ∗

t , is given by Eq. (23).

σ∗
t = 1− 12M∗ βH,f ξ f(ξ) (23)

The dimensionless stress in the steel bars, σ∗
s ,

is described by Eq. (24).

σ∗ 2
s = 24M∗ η2 βH,f ξ f(ξ)

(
1− µ

ξ

)
(24)

The brittleness number for steel-fiber rein-
forced concrete, βH,f , is introduced by Eq. (25):

βH,f =
h

ℓch,f
=

2h(fFts − fFtu)

Ecwu

(25)

As a summary, the crack depth ξ is governed
by Eq. (20), which defines the specimen depth,
while the dimensionless crack opening w∗ is
given by Eq. (22). Additionally, the dimension-
less stress in the steel bars σs is obtained from
Eq. (24).

To analyze the stress distribution, crack
opening, and bending moment at a specific
crack depth ξ, the system of six equations must
be solved: Eqs. (16), (18), (20), (22), (23), and
(24). The variables in this system include σ∗

c ,
σ∗
t (equivalent to fFtu), M∗, γ, σ∗

t , and σ∗
s , with

βH,f being the sole input parameter. The crack
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depth, ξ, acts as a control variable during the
cracking process, providing a unique equilib-
rium solution for each depth. The crack opening
behavior is influenced by both brittleness and
the α ratio, with βH,f being the only input pa-
rameter.

4 RESULTS AND DISCUSSION

This study enhances the accuracy of struc-
tural design for reinforced concrete sections by
providing a model that incorporates longitudi-
nal reinforcement and steel fiber content. It en-
ables more precise predictions of flexural ca-
pacity and crack propagation, leading to safer
and more efficient structural designs.

4.1 Response M∗–w∗ of the model

This section examines the effect of the brit-
tleness number, βH,f , on the behavior of con-
crete sections reinforced with both longitudinal
steel bars and steel fibers. Figure 6 shows the
M∗–w∗ curves during crack propagation for α
(= fFtu

fFts
) values of 0.7, 0.8 and 0.9, and βH,f val-

ues of 0.005, 0.002, and 0.0007, respectively,
which are typical for fiber-reinforced concrete.
The curves correspond to different longitudinal
reinforcement values, represented by η and ρ.
The results reveal that for the three values of
α analyzed, the maximum M∗ increases as the
values of parameters η and ρ grow. Addition-
ally, as βH,f decreases, the maximum M∗ in-
creases, especially for sections with higher val-
ues of longitudinal reinforcement η and ρ. The
analysis, using moment versus crack opening
curves instead of moment versus curvature, of-
fers a more accurate depiction of the flexural be-
havior of fiber-reinforced concrete.

(a)

(b)

(c)

Figure 6: Relationship between the non-dimensional
bending moment, M∗, and the non-dimensional crack
mouth opening, w∗, for various values of η and ρ: (a)
α = 0.7, (b) α = 0.8, (c) α = 0.9.

4.2 Size effect on flexural strength
As shown in Fig. 6, the maximum load

value is determined as the absolute peak within

8
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the dimensionless crack opening range [0, 1].
This maximum load is related to the flexural
strength, fR, as defined by Eq. (26):

fR =
6Mm

bh2
=

6M∗
p bh

2fFts

bh2
= 6M∗

mfFts (26)

where Mm represents the maximum moment
at section cracking, M∗

p is the dimensionless
plastic moment, and M∗

m is the dimensionless
maximum moment (both divided by fFts).

Figure 7 illustrates the relationship between
the brittleness number, βH,f , plotted on the x-
axis, and the dimensionless flexural strength,
f ∗
R, the dimensionless bending moment, M∗,

and the dimensionless crack depth correspond-
ing to flexural strength, ξm, as functions of α.
The results also account for the level of longitu-
dinal reinforcement, represented by η and ρ.

Figure 7 demonstrates trends consistent with
Fracture Mechanics models in steel-fiber rein-
forced concrete. Typically, βH,f for mass con-
crete ranges from 0.1 to 10, while for steel-fiber
reinforced concrete, it is between 0.0001 and
0.1 [4]. Figure 7 shows the dependence of di-
mensionless parameters — f ∗

R, M∗, and ξm —
on βH,f .

As βH,f approaches 0.0001, f ∗
R converges in

the range 2.5–3, indicating a plastic limit solu-
tion for cohesive cracks, as shown in Fig. 7 (a).
Sections with longitudinal reinforcement and
steel fibers under these conditions align with
the linear portion of the cohesive crack plastic
limit [4].

For typical βH,f values in steel-fiber rein-
forced concrete ([0.0001–0.01]) [4], the crack
depth reaches significant levels, indicating that
the fracture process zone covers a large portion
of the section edge under maximum load.

Finally, the ratio fFtu

fFts
≤ 1 aligns with the

flexural strength classifications a-c in Model
Code 2010 [11] and classes a–b in Annex L of
Eurocode 2 [13]. Therefore, only classes 1–8
/ a–b are suitable, as they satisfy the softening
behavior requirements [13], confirming the ap-
plicability of this analytical model for structural
design purposes.

Figure 7: Correlation between the brittleness num-
ber, βH,f , and the non-dimensional flexural strength,
f∗
R, the non-dimensional bending moment, M∗, and the

non-dimensional crack depth corresponding to the non-
dimensional flexural strength, ξm.

5 CONCLUSIONS
This study introduces a novel analytical

model for evaluating the flexural behavior of
reinforced concrete with longitudinal reinforce-
ment and steel fibers based on Fracture Me-
chanics. The model integrates Eurocode 2 for
compression behavior and Model Code 2010
for post-cracking softening, providing accurate
representations of bending, crack propagation,
and concrete-steel bond interaction. A key
feature is the compatibility equation linking
crack opening with reinforcement elongation,
ensuring realistic moment-crack opening cor-
relations. The model accurately calculates the
fracture zone depth, stress distribution, and ac-
counts for the effects of the brittleness number,
making it adaptable to various reinforced con-
crete scenarios. Dimensionless relationships for
flexural strength, f ∗

R, ultimate bending moment,
M∗, and crack depth, ξm, provide practical in-
sights for structural design. The model can also
be adapted to account for different reinforce-
ment ratios, bond strengths, and their influence
on crack openings and failure modes. Future
research should focus on experimental valida-
tion, large-scale effects, and integration into
structural design software, further enhancing
its practical application. This model advances
predictive capabilities for reinforced concrete
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bending, offering valuable insights for research
and design.
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