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Abstract. The modeling and simulation of concrete structures at high-loading rates is an important
topic in computational mechanics, as it can be relevant to improving the safety and durability of
structures. High-loading rates on concrete structures may occur during explosions, or impacts. Mesh-
based methods often encounter difficulties in these scenarios due to potentially high mesh distortion
in these regions. However, the Material Point Method (MPM) is well-suited for modeling situations
involving large deformations, as it uses a continuously reset computational mesh.

Additionally, modeling concrete that exhibits strain softening behavior requires regularization
methods to solve strain localization and mesh dependency issues. One of the leading methods is
implicit gradient enhancement, which is based on a nonlocal formulation, where an additional degree
of freedom is introduced to be solved in the linearized system of equations.

In this work, the MPM is used with a regularized microplane damage material model at finite
deformation to describe concrete behavior at high loading rates.

1 Introduction

Concrete structures play a dominating role
in modern constructions due to their durability,
versatility, and cost-effectiveness, making them
widely used in buildings, bridges, dams, and
protective facilities. However, these structures
could be subjected to extreme events such as
impacts, blasts, or accidental collisions, which
impose extreme and dynamic loading condi-
tions. Under such scenarios, concrete exhibits
complex nonlinear behavior, including crack-
ing, crushing, and fragmentation. Modeling
these phenomena, using mesh-based methods,
such as the Finite Element Method (FEM), of-
ten suffers from local mesh distortion at the
impacted face. Moreover, the Material Point
Method (MPM), introduced by SULSKY [1],
can overcome mesh distortion at a reasonable

computational cost. Numerous studies related
to MPM use explicit time integration schemes.
In contrast, just a reduced number are based
on implicit time integration schemes [2, 3, 4],
among others, which benefit from larger time
steps and more stable numerical solutions.

Moreover, concrete exhibits a complex ma-
terial response due to the heterogeneity of its
constituents. Initially, concrete yields an elas-
tic isotropic response, but during loading, the
formation of microcracks induces anisotropy in
its behavior. Over time, the evolution of these
microcracks leads to the failure of the struc-
ture. One common approach to represent con-
crete is the microplane model, first introduced
by BAẐANT and OH [5]. This model incorpo-
rates damage and plasticity [6] and has been
generalized to finite strains [7]. An efficient
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regularized nonlocal microplane model is pre-
sented in [8, 9] for FEM, and later introduced
into MPM [10]. This contribution utilizes a reg-
ularized microplane damage material descrip-
tion in MPM with an implicit time discretiza-
tion scheme. It is based on [10], including the
inertia effects to describe concrete behavior at
high loading rates.

2 Material Point Method
The Material Point Method (MPM) is a hy-

brid numerical technique combining particle
and grid-based methods for solving problems
in computational mechanics. In MPM, the do-
main is represented by a set of particles, known
as material points, that carry all the data of the
body and move through a fixed background grid
where the computational calculations are per-
formed. Figure 1 illustrates the computational
process in MPM for a single step.

First, the data stored in the material point is
projected to the background grid by

□v =

np∑
p=1

Svp□p, (1)

where □ are the corresponding variables. These
include external forces f , acceleration ü, veloc-
ity u̇, and mass m. Subscript v and p denote
the variables at nodes and at material points, re-
spectively. Svp are the selected projection func-
tions, and np is the total number of material
points that influence the grid node. In the sec-
ond step, the governing differential equations
are evaluated in the background grid, and the
system is solved for the unknown displacements
uv. The third step involves projecting the re-
sulting data back to the material points, updat-
ing their spatial position. Finally, the grid resets
to its original undeformed configuration, retain-
ing no information of the body. Consequently,
the material points can be located in a different
subset of the background grid in each step.

Cell-crossing noise is a well-known problem
that affects MPM. This effect arises when ma-
terial points move between grid cells if stan-
dard linear FEM shape functions are used as

projection functions, which are C0-continuous.
This causes abrupt changes in the gradient of
the shape function, resulting in inaccurate stress
values. Different strategies have been devel-
oped to mitigate this problem. Some of them
use a domain-based projection function such
as the generalized interpolation material point
method (GIMP) [11], the dual domain material
point method (DDMP) [12], or convected parti-
cle domain interpolation (CPDI) [13, 14]. An-
other strategy is based on the employment of
B-spline shape functions [15]. In this contribu-
tion, the CPDI technique is applied.

Figure 1: Computational process in MPM.

3 Implicit gradient-enhanced microplane
model

In this section, the strain energy den-
sity function is defined within the microplane
model. The model is regularized by the im-
plicit gradient enhancement at finite strains and
implemented into the material point method.
Therefore, the concepts from [9, 10, 16, 17], are
briefly summarized.
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3.1 Nonlocal MPM formulation
The problem is governed by two partial dif-

ferential equations, which are the balance of lin-
ear momentum

∇ · σ + b = ρü, (2)

and the modified HELMHOLTZ equation

η̄ − η − c∇2η̄ = 0. (3)

Moreover, Equation (3) can be solved by in-
cluding the homogeneous NEUMANN boundary
condition

∇η̄ · nb = 0. (4)

In Equation (2), ∇· is the divergence oper-
ator, σ is the CAUCHY stress tensor, b is the
mass specific body force vector, ρ is the mate-
rial density, and ü is the acceleration vector. In
Equation (3), η̄ and η are the nonlocal and lo-
cal equivalent strain of the bulk material, c is
the gradient activity parameter, and ∇2 is the
LAPLACE operator. In Equation (4), nb denotes
the unit normal vector to the external boundary,
and ∇ is the gradient operator.

Using the test functions δu and δη̄, the weak
forms of Equations (2) and (3) read

∫
B
δu·∇·σ dv+

∫
B
δu·b dv =

∫
B
δu·ρü dv,

(5)
and

∫
B
δη̄ η̄ dv +

∫
B
∇δη̄ c∇η̄ dv =

∫
B
δη̄ η dv,

(6)
respectively.

Introducing the material point discretization
defines the displacements at the material points

up = Svpuv, δup = Svpδuv, (7)

and the nonlocal variable

ηp = Svp ηv, δηp = Svpδηv, (8)

where up and uv represent the displacements at
the material point and at the grid nodes, respec-
tively. ηp and ηv denote the nonlocal equivalent
strain at the material point and at the grid nodes.
In general, it is possible to utilize different pro-
jection functions for the displacement field Svp

and the nonlocal field Svp. However, the con-
tribution at hand uses the same projection func-
tions for both fields.

3.2 Nonlocal damage microplane model
The microplane theory provides a simple

and straightforward approach to model induced
anisotropy. The strategy in the microplane ap-
proach is to couple a geometric reference as
the basis for the constitutive description at the
material point under investigation. It is based
on a projection of the deformation tensor onto
vectors on randomly oriented planes. In those
planes, the constitutive law of the material be-
tween the projected strain and stress vectors
are applied. The stress tensor is then assem-
bled from the contributions of every plane. The
strain energy density function ψmac can be ex-
pressed in terms of microplane quantities as

ψmac =
3

4π

∫
Ω

ψmicdV, (9)

considering ψmic is the strain energy density
function on each microplane. In the contribu-
tion at hand, the strain energy density function,
based on the damage formulation, is taken from
[9] and reads

ψmic = (1− dmic)

(
1

2
KmicE2

V

+GmicED ·ED

)
.

(10)

In Equation (10), the bulk modulus Kmic and
the shear modulus Gmic are material parameters
that remain constant in all microplanes. EV and
ED are the volumetric and deviatoric strains
projected from the GREEN-LAGRANGE strain
tensor onto the microplanes. dmic represents the
damage variable in the microplane that reads
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dmic = 1− γ0
γmic

(
1− α + α exp β(γ0 − γmic)

)
,

(11)
which is a function of the maximum material
degradation parameter α, the softening param-
eter β, the damage threshold γ0 and the history
variable γmic on each microplane that drives the
evolution of the damage variable, defined as

γmic(t) = max(γ0, η
mic). (12)

The evolution of the history variable γmic de-
pends on the nonlocal equivalent strain at each
microplane ηmic, which is obtained from the lo-
cal counterpart ηmic affected by the ratio of the
nonlocal equivalent strain to the maximum local
equivalent strain as

η̄mic =
η̄

η
ηmic. (13)

The value of the local equivalent strain ηmic at
each microplane is obtained as

ηmic = 3k1EV +

√
(3k1EV )2 +

3

2
k2ED ·ED,

(14)
where k1 and k2 are material constants obtained
from POISSON’S ratio ν and the ratio of com-
pressive to tensile strength kr of the material
given by

k1 =
kr − 1

2kr(1− 2ν)
, (15)

and
k2 =

3

kr(1 + ν)2
. (16)

4 Numerical simulation
Subsequently, a compact tension test of pure

concrete is simulated. The experimental data
are taken from [18]. The geometry and test
setup are presented in Figure 2. The tensile
load is applied to the specimen in the lower part
of the notch as prescribed displacement. The
material model parameters are given in Table 1,
where the elastic properties of the material are

taken from the experimental test [18], while the
rest of the parameters are identified to fit the
experimental crack patterns. The specimen is
tested with three different displacement rates of
0.035 m/s, 1.4 m/s, and 4.3 m/s. The simulation
is divided into 1000 time steps with a time in-
crement of ∆t = 1 × 10−6 s. The size of an
individual grid cell of the background grid is
1.0 × 1.0 mm2 with 2 × 2 material points per
element with a total of 155530 material points.

Figure 2: Compact tension test setup.

Material parameters
K 18,750.00 [MPa]
G 15,254.00 [MPa]
ν 0.18 [ - ]
γ0 1.25E-3 [ - ]
kr 14 [ - ]
α 0.98 [ - ]
β 650.0 [ - ]
c 1.0 [mm2]

Table 1: Material parameters for compact ten-
sion test.

Figure 3 presents the predicted damage zone
obtained by simulations in comparison with
experimental crack patterns reported in [18],
which present a good correlation for different
loading rates. Moreover, it can be seen that
at a low loading rate of 0.035 m/s, the dam-
age zone propagates in the same direction as the
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notch. Moreover, for a loading rate of 1.4 m/s,
an inclined damage propagation is observed in
Figure 3b. Furthermore, for a loading rate of
4.3 m/s branching of the damage zone is pre-
sented in Figure 3c.

a)

b)

c)

rates applied at the bottom of the loading frame, actual displace-
ment rates at the same place and at the contact between bottom
loading frame and concrete, recorded maximum reaction and ob-

served failure mode. Note that the gap in the loading rate be-
tween test Nr. 7 and 8 is relatively large, however, the aim of
the study was not to exactly detect the loading rate at which

Fig. 8. Experimentally and numerically predicted crack patterns in terms of max. principal strains for: (a) static loading, (b) loading rate 0.035 m/s, (c) 1.40 m/s and (d)
4.30 m/s (red = critical crack opening of 0.20 mm). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Figure 3: Predicted damage zone and experi-
mental crack patterns [18] for loading rates a)
0.035 m/s, b) 1.4 m/s and c) 4.3 m/s

5 Conclusions
This contribution uses the implicit gradient-

enhanced microplane damage material descrip-
tion in the implicit MPM presented in [10],
including the inertia effects to address high-
loading scenarios in concrete. Through a nu-
merical example, the model demonstrates its ca-
pability to capture induced anisotropy and pre-
dict damage zones in a reliably and physically
consistent manner. Furthermore, strategies to
refine the damage zone by evolving the gradient
activity parameter c as a function of the nonlo-

cal equivalent strain η̄ [19, 20], rather than treat-
ing it as a constant parameter, will be consid-
ered.
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