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Abstract. The macroscopic behaviour of concrete is quasi-brittle, and its fracture behaviour is greatly
influenced by the fracture process zone (FPZ). The experimental studies on plain concrete show that
the load-displacement response of the concrete is characterized by an initial elastic phase followed
by a nonlinear behaviour up to peak load and subsequent non-linear softening response. Contin-
uum Damage Mechanics (CDM) is a widely used approach for modeling the fracture behavior of
quasi-brittle materials. In CDM, softening is represented by stiffness degradation, modeled using a
monotonically decreasing damage parameter. This damage variable is characterized through area re-
duction in the cross-section, degradation of elastic stiffness, microcrack density, etc. However, the
evolution equations in most of the models are not consistent with their physical meaning. In this
work, we relate damage to a probability measure that modifies the load-carrying area or volume (in a
diffused sense). The damage variable evolves in a manner analogous to transition probability density
in non-conserved processes, like those observed in killed diffusion processes. The evolution equation
consists of a killing rate term that controls the rate of damage/degradation. The structure of the killing
rate is such that it consists of a term that controls initial elastic behaviour, and a parameter that con-
trols the rate of fracture. To ensure the monotonic reduction in this variable, the killing rate is ensured
to always be a positive quantity. Softening in the load-displacement response is captured similarly
to that of CDM through a gradual reduction in stress in the linear momentum balance equation. We
validate our model by reproducing the crack pattern and load-displacement responses observed in
corresponding experimental studies of plain concrete.

1 Introduction
Fracture is a prevalent failure mode in en-

gineering materials like glass, concrete, rocks,
ceramics, etc. and failure is typically pre-
ceded by the formation of intricate crack tra-
jectories. Predicting complex crack patterns re-
quires high-fidelity numerical tools, which may
involve high computational costs. Fracture and
damage theories that form the basis for these
numerical tools must have sufficiently sound
physical and mathematical foundations to re-
duce this cost and increase the ease of numeri-
cal implementation. Similar to [1], a mathemat-

ically rigorous treatment can augment the phys-
ical understanding of the bond-breaking or the
degradation process for the same.

This article proposes a novel regularised
integral continuum damage model for quasi-
brittle fracture that draws inspiration from a
measure-theoretic perspective on the Contin-
uum Damage mechanics (CDM). Degradation
or damage is associated with a change of mea-
sures, with the degradation function appearing
as a Radon-Nikodym derivative and damage
physically representing breaking of the macro-
scopic bonds between material points that trans-

1

https://doi.org/10.21012/FC12.1169
MS18-1:2

https://doi.org/10.21012/FC12.1169


Upadhyayula M. M. A. Sai Gopal, Ved Prakash, Debasish Roy and Ananth Ramaswamy

fer force. The damage evolution has a closed-
form solution and does not need to be numer-
ically solved through a computationally inten-
sive process.

Existing damage models can be classified
into two main categories: continuum and dis-
crete approaches. A key distinction between
them is how they handle displacement jumps
resulting from discontinuities. Discrete ap-
proaches consider the displacement jump due
to discontinuity in the formulation, while con-
tinuum approaches smear it out.

Initial discrete approaches employed Finite
Element Methods (FEM) with re-meshing to
simulate crack growth. However, this method
had a significant limitation: the crack path
was constrained to follow element edges, lead-
ing to high mesh dependency in the predicted
crack paths. Extended finite element (XFEM)
[2] doesn’t require re-meshing; However, prior
knowledge about the crack path for enrich-
ment is needed. Discrete models often neces-
sitate complex crack-tracking algorithms, mak-
ing them less suitable for intricate problems like
3D crack propagation. Other discrete methods
include cohesive crack model [3] depending on
traction separation law, interelement separation
model [4], cracking particle method [5] etc.

In contrast, continuum-based theories like
the Microplane and crack band models are par-
ticularly well-suited for materials like concrete
[6, 7]. Microplane models define constitutive
equations using vectors representing stress and
strain on randomly oriented planes, differing
from classical continuum approaches, where
second and fourth order tensors are used. How-
ever, It has been pointed out that the Microplane
model needs a restriction on Poisson’s ratio to
be 0.25. Furthermore, it faces challenges in
achieving thermodynamic consistency, as the
Microplane response governs both elastic and
inelastic behaviour.

In CDM, stiffness evaluation is addressed
by introducing a damage parameter to quantify
material deterioration. Damage can be defined
at various scales in CDM. At the microscale,
it might involve the rupture of atomic bonds.

At the mesoscale, damage can manifest as the
nucleation, growth, and coalescence of micro-
scopic voids. At the macroscale, damage is of-
ten associated with the propagation of cracks.
These phenomena collectively contribute to ma-
terial degradation [8]. The physical interpreta-
tion of the damage parameter varies across stud-
ies. It has been linked to factors such as ef-
fective load-carrying area [9], variation in elas-
tic modulus [10] micro crack density [11], etc.
This diversity highlights the challenge of defin-
ing a univocal damage variable. Moreover,
many existing studies lack consistency in their
damage evolution equations.

Local continuum damage models may be
physically inconsistent due to their assumption
of scale-independent behaviour. Micromechan-
ical arguments [12] support the need for nonlo-
cal CDM, citing two key reasons: (a) The re-
lease of stored energy from a single microcrack
depends on the macroscopic continuum’s av-
erage strain, and (b) Microcracks interact with
each other. Most engineering materials have an
associated characteristic length scale of hetero-
geneity. Consequently, non-local models are es-
sential for both physical accuracy and numeri-
cal stability.

Non-local models can be categorized into
two types: (a) Integral-type models, which de-
fine the non-local field through a weighted av-
erage over a small neighbourhood that depends
on physical quantities like the length scale of
heterogeneity, and (b) Gradient-enhanced mod-
els, which primarily originate from integral ap-
proaches. These models require small length
scale parameters, allowing the higher gradient
of the non-local variable to be disregarded.

The phase field method(PFM) is a gradient-
enhanced model. While PFM is popular
for modeling phase transformations, has been
adapted for fracture mechanics [13]. However,
this adaptation lacks a clear physical interpre-
tation for the phase field variable [1]. This ne-
cessitates redefining the free energy functional
and developing specific numerical techniques,
potentially leading to challenges in accurately
capturing fracture behavior
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A recent study [1] proposed a nonlocal dam-
age model within the graph-based finite element
analysis (GraFEA) framework [14]. In this ap-
proach, each element is assumed to have a fi-
nite number of potential crack planes, and the
evolution of the damage variable (which repre-
sents the survival probability of the crack plane)
is governed by a master equation [15]. How-
ever, the master equation doesn’t follow any
known probability evolution equations. This
work introduces a novel non-local CDM frame-
work that leverages the concept of a Radon-
Nikodym derivative to model damage. By
treating damage as a probability measure, we
provide a clearer physical interpretation and
avoid the limitations associated with traditional
phase-field approaches. This approach offers
a more efficient and accurate way to simulate
damage evolution in quasi-brittle materials

The remainder of this article is structured
as follows. In §2, we discuss the underlying
rationale for our approach and the connection
between degradation and changes of measures.
Also, the governing PDE and dissipation in-
equality is presented. In §3, we reproduce key
experimental observations in concrete fracture.
Finally, we conclude our contribution in §4.

2 Theoretical framework

Let Ω0 denote the cracked domain as illus-
trated in Fig. 1. The boundary of the Ω0, Γ is
partitioned into Γt on which external tractions t̃
are specified and Γu on which displacements ũ
are prescribed.

Figure 1: Deformable body with domain Ω0 and bound-
ary Γ

In Continuum Damage Mechanics(CDM),
the energy within a given domain Ω0, for an un-
damaged body can be typically expressed as

E =

∫
Ω0

ψ0dΩ0 (1)

where ψ0 is the free energy density of the intact
body. we assume ψdam as the free energy den-
sity of the damaged body and that dΩ̂0 be the
modified incremental measure in the presence
of damage.

In CDM, ψdam can be written using the
degradation function (ϕ) as,

ψdam = ϕψ0 (2)

Using the modified incremental measure, the
Energy can now be written as

E =

∫
Ω̂0

ψdamdΩ̂0 =

∫
Ω0

ϕψ0dΩ0 (3)

Here, the degradation function can also re-
garded as the Radon-Nikodym derivative. We
assume that between the material points, the
mechanical force is transferred through the
macroscopic bonds and that the material degra-
dation progresses through the snapping of these
macroscopic bonds. We relate damage to the
probability measure (P), which measures the
number density of the bonds that are not bro-
ken (undamaged). We assume that the evolu-
tion of these macroscopic bonds is diffusive,
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and hence, the evolution equation of the prob-
ability density function (ϕ) follows the Fokker-
Planck equation. Adding a suitable killing term,
we obtain the probability density function over
a time intervel dt as,

ϕ (|y − x|) = 1

(2πβ2dt)
n
2

×

exp
{
−

∫ t+dt

t

Gds− |y − x|2

2β2dt

} (4)

where x is the material point, y is the neigh-
bouring point, n is the dimension of y, β2 is the
diffusion coefficient, and G is the killing rate.

To ensure the monotonic reduction in the
damage variable and to satisfy the thermody-
namic restrictions, the killing rate is ensured to
always be a positive quantity. The form of the
killing rate is given in eqn. (5) that it consists
of a term that controls initial elastic behaviour,
and a parameter that controls the rate of frac-
ture, and a term which vanishes during unload-
ing.

G = G0⟨
σeq

σc
− 1⟩⟨σ̇eq⟩ (5)

where, ⟨A⟩ denotes the Macaulay brackets of A
which is defined as A+|A|

2
and σeq is the equiva-

lent stress which represents the current loading
condition. The equivalent stress is calculated
following the method outlined in [16]. The ex-
pression for the equivalent stress is given by
Eqn. 6

σeq =
√

2ψ+E (6)

where ψ+ is the part of ψ contributing to dam-
age and E is the Young’s modulus. ψ+ can
be defined through various menthods available
in literature [17, 18]. In the proposed model,
we have considered the spectral decomposition
[19].

The dependencies of ψ are as defined in
Eqn.14. The free energy function is given by
Eqn. 17

In this study, we consider infinitesimal de-
formations. Let us denote the stress and strain
tensor as σ and ϵ, respectively. At a material
point x the small strain tensor ϵ as a function of

displacements u is given as,

ϵ =
1

2

(
∇u+∇uT

)
(7)

To accurately model crack initiation and
propagation, it is essential to consider the non-
local effects that influence the fracture process
[1]. Hence, we consider the stress and strain
as the non-local quantities using the transition
density. Let Ω′

0 be the sub-domain used to de-
fine the non-local or the mean stress and strains

σ∗(x) =

∫
Ω′

0

σ(y)ϕ (|y − x|) dΩ′
0 (8)

ϵ∗(x) =

∫
Ω′

0

ϵ(y)ϕ (|y − x|) dΩ′
0 (9)

The internal power can then be expressed as:

Pint =

∫
Ω0

σ∗ : ϵ̇dΩ0 (10)

The above expression is similar to nonlocal
elasticity (see, e.g. [20]). In our work, ϕ is
related to damage and its evaluation incorpo-
rates the degradation mechanism during dam-
age evolution. Assuming that there is no exter-
nal body force acting, the external power can be
expressed using the following expression

Pext =

∫
∂Ω0

t̃ · vdΓ (11)

using the divergence theorem and invoking the
virtual power balance principle(Pext = Pint),
the linear momentum balance equation can be
written as,

∇ · σ∗ = 0 on Ω0 (12a)

σ∗n = t̃ on Γ (12b)

Where n is unit outward normal to the bound-
ary Γ.

The energy imbalance can be written as:

Pint −
∫
Ω0

ψ̇dΩ0 ≥ 0 (13)

Assuming the form of free energy density as

ψ = ψ(ϵ, ϵ∗) (14)
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Taking the material-time derivative of the free
energy density, and using the self-adjoint prop-
erty of the non-local operator (refer to Eq. 5
in [20], we obtain the constitutive relation and
the reduced dissipation inequality as :

σ∗ =
∂ψ

∂ϵ
+

∫
Ω′

0

∂ψ

∂ϵ∗
(y)ϕ (|y − x|) dΩ′

0 (15)

∂ψ

∂ϵ∗
:

∫
Ω′

0

ϵ(y)ϕ̇(|y − x)|dΩ′
0 ≤ 0 (16)

The form of the free energy considered as

ψ(ϵ, ϵ∗) =
λ

2
(trϵ)(trϵ∗) + µϵ : ϵ∗ (17)

where, λ and µ are Lame’s parameters. Hence,
we obtain the constitutive relation on σ∗ as

σ∗ = λ(trϵ∗) + 2µϵ∗ (18)

3 Numerical results
In this section, we consider our constitu-

tive theory to validate the wedge splitting test
for plain concrete. A wedge is inserted be-
tween opposing faces of the specimen. Ap-
plying a compressive load to the wedge forces
it deeper, inducing tensile stresses that initiate
and propagate cracks. The specimen’s geome-
try along with loading and boundary conditions
are shown in Fig. 2. The thickness of specimen
is 400 mm [21, 22]. This is a plane stress prob-
lem. Two horizontal splitting displacements ur
are imposed on the upper lateral faces. The
reaction force Fr and the crack mouth open-
ing displacement (CMOD) are measured during
loading. The following material properties are
chosen: G0 = 0.0385mm2/N , Young’s mod-
ulus E = 28300MPa, tensile strength σc =
2.12MPa, and Poisson’s ratio ν = 0.18. The
mesh size in the vicinity of the crack is approxi-
mately 1.5 mm and it gradually increases to 100
mm. (see Fig. 3)

Figure 2: Geometry and boundary conditions for wedge
splitting test (all dimensions are in mm)

Figure 3: FE mesh with the average element size of 1.5
mm around the region where the crack is expected to
propagate

The simulated crack path is shown in the Fig.
4 and the pattern closely matches with experi-
mental observations.
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Figure 4: contour plot of damage

Figure 5: Comparisons of Force–CMOD curves with ex-
periments and PFM

The predicted and the experimental force-
displacement response are shown along with the
response of Cohesive Phase Field model ( [22])
in Fig. 5. The predicted response compare well
with the experimental results.

4 Conclusions
We propose a new approach for modeling

damage in the framework of CDM. We intro-
duce a probability measure by recognizing the
similarity between the degradation function in
CDM and the Radon-Nikodym derivative in
measure theory. The evolution of this proba-
bility measure is modelled as a killed diffusion
process with a positive killing rate. Our model
interprets damage as breaking bonds between
material points (i.e., the ability to transfer the

forces between two material points). The prob-
lem was framed so that the availble closed-form
solution in the killed diffusion process for the
evolution of PDF can be used. This formulation
allows for a closed-form solution of the dam-
age evolution, eliminating the need for compu-
tationally expensive micro-force balance equa-
tions. Along with the substantive computational
efficiency, this model also shows physical trans-
parency. The ad-hoc history-dependent routes
that are used to account for the irreversibility of
the damage can be eliminated by considering an
appropriate killing rate in our method. The ef-
ficacy of the proposed formalism is manifested
by performing numerical experiments on quasi-
brittle damage using wedge splitting test.
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croplane model m7 for plain concrete. ii:
Calibration and verification. Journal of
Engineering Mechanics, 139(12):1724–
1735, 2013.

[8] Sumio Murakami. Continuum damage
mechanics: a continuum mechanics ap-
proach to the analysis of damage and frac-
ture, volume 185. Springer Science &
Business Media, 2012.

[9] Lasar Kachanov. Introduction to con-
tinuum damage mechanics, volume 10.
Springer Science & Business Media,
2013.

[10] Jean Lemaı̂tre and Jean-Louis Chaboche.
Phenomenological aspect of damage fail-
ure. J Méc Appl, 2(3), 1978.

[11] Jacinto Ulloa, Jef Wambacq, Roberto
Alessi, Esteban Samaniego, Geert
Degrande, and Stijn Francois. A
micromechanics-based variational phase-
field model for fracture in geomaterials
with brittle-tensile and compressive-
ductile behavior. Journal of the Mechan-
ics and Physics of Solids, 159:104684,
2022.
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