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Abstract. A computationally-efficient multi-scale model is developed for the analysis of fiber-
reinforced concrete (FRC) structures. At the macro-scale, the structural behaviour under mechanical
loading is analysed using the Finite Element Method, where in each integration point the effective
constitutive response of the FRC is computed considering a representative collection of cohesive
particles, fibers and air voids and applying a homogenization technique known as the Granular Mi-
cromechanics Approach. The micro-scale kinematic measures are calculated from the strain tensor
in the material point by adopting the kinematic hypothesis. The micro-scale constitutive responses
of the particle contacts and fibers are specified through path-dependent elasto-damage formulations.
The constitutive laws of the particle contacts account for a strain-softening behavior for inter-granular
tension and shear, and a strain-hardening behavior for inter-granular compression. The constitutive
law for the fibers mimics the effect of elastic bonding between fiber and matrix, followed by fiber
debonding and sliding under an increasing tensile load, eventually leading to complete pull-out. Un-
der compression, the constitutive behaviour of fibers is determined by an initial, elastic branch, which
continues into a failure branch that captures their combined buckling and crushing behaviour. The
distribution of the fiber orientations is defined via a probability density function, and the homoge-
nized Cauchy stress in a macro-scale material point is calculated by applying the Hill-Mandel micro-
heterogeneity condition. The numerical solution procedure is strain-driven, where the macroscopic
stress and tangential stiffness tensors are incrementally updated from the homogenized elasto-damage
behavior of the particle contacts and fibers. The accuracy and efficiency of the multi-scale model are
demonstrated by performing FEM simulations on the failure behavior of FRC samples subjected to
uniaxial tensile load, and comparing the results to experimental data reported in the literature.

1 INTRODUCTION

Plain concrete is a brittle material character-
ized by low tensile strength and toughness, and
therefore is prone to tensile fracturing that even-
tually may lead to catastrophic failure. A com-
mon method to improve the mechanical proper-
ties of concrete is by adding short high-strength
fibers to the mix design. Since the presence of
fibers restricts the propagation of cracks, fiber-

reinforced concrete exhibits enhanced tensile
strength, deformation capacity, and toughness
in comparison with plain concrete [1].

The failure and deformation mechanisms re-
sponsible for the macro-scale constitutive be-
haviour of fiber-reinforced concrete involve
phenomena that originate from the micro-
structural level. During loading, the fiber-
reinforced concrete at the micro-scale may ex-
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perience tensile cracking, shear cracking and
material compaction/crushing in the cementi-
tious matrix, debonding between matrix and
fiber under tensile loading, followed by fiber
sliding and eventually complete fiber pull-out,
and fiber micro-buckling and fiber crushing
under compressive loading. Combinations of
these micro-structural phenomena have been
simulated with discrete lattice models, where
the matrix material within the micro-structural
domain is discretized by means of lattice of
nodes, across which the individual fibers are
randomly oriented in accordance with their
fiber volume faction [2]. In addition to discrete
lattice models, the micro-structural behaviour
of fiber-reinforced concrete can be simulated
with continuum modelling approaches, where
the matrix material can be discretized by solid
elements equipped with a regularized damage
model and the fibers can be modelled by beam
elements or truss elements with their slipping
and debonding behaviour described by a fiber-
matrix contact model. The spatial discretiza-
tions of the matrix material and fibers can be
performed by applying conforming meshes [3],
or non-conforming meshes [4].

Although the above discrete and continuum
models describe the failure behaviour of fiber-
reinforced composites in a meticulous fashion,
their applicability for the analysis of engineer-
ing structures with a large number of fibers is
limited due to the large computational demand
associated with solving related boundary value
problems. To circumvent this problem, effi-
cient micro-mechanical models have been de-
veloped for the constitutive behaviour of fiber-
reinforced concrete, which are based on homog-
enizing the micro-structural behaviour of the
fibers and the matrix material across cracking
planes with varying orientation characteristics,
see [5] for the uniaxial tensile behaviour and [6]
for the behaviour under multi-axial loading con-
ditions. The challenges faced by these mod-
els, however, are related to solving numerical
robustness problems in the FEM analyses and
also defining continuum (stress and strain) mea-
sures at the cracking planes, which tend to loose

their physical significance for fiber-reinforced
concrete characterized by micro-structural con-
stituents of a discrete nature [6].

In order to improve these aspects, a computa-
tionally efficient multi-scale constitutive model
is developed for fiber-reinforced concrete using
a homogenization method called the Granular
Micromechanics Approach (GMA). In this ap-
proach, the effective constitutive response of the
fiber-reinforced concrete material is calculated
by homogenizing the micro-scale behaviour of
its three constituents - fibers, cohesive particles
and air voids - across a representative volume
element. Specifically, GMA efficiently incor-
porates information from the micro-scale con-
stituents into the continuum model by connect-
ing the micro-scale properties to a probabil-
ity density function describing their directional
distribution, thereby avoiding the explicit mod-
elling of the micro-structural geometry. Over
the past 35 years, GMA has been successfully
applied for the modelling of unreinforced gran-
ular materials characterized by various types
of constitutive behaviour, see [7–10]. In the
present modelling framework, the micro-scale
particle contact model characterizing the ce-
mentitious matrix material is enhanced to ac-
curately describe the concrete matrix behaviour
and the model is complemented with a fiber
model that accounts for the debonding, slip-
ping and buckling/crushing behaviour of the re-
inforcing fibers. The two models are consis-
tently incorporated in a GMA homogenization
scheme to compute the effective, macro-scale
response of the fiber-reinforced concrete. Using
an incremental-iterative update algorithm, the
hierarchical multi-scale constitutive model is
implemented within an Finite Element Method
(FEM) framework. The significance of the
results is demonstrated through a comparison
with experimental data reported in the litera-
ture.

2 MULTI-SCALE METHOD
2.1 Homogenization formulation

Consider a representative volume element
(RVE) in the fiber-reinforced concrete material,
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which is composed of its three micro-scale con-
stituents, i.e., the cohesive particles, fibers and
air voids. Consider now two neighboring parti-
cles q and p within the RVE. Adopting a Carte-
sian coordinate system and denoting the dis-
placement in an arbitrary material point of the
three-dimensional RVE as u = {ux, uy, uz},
the displacement components uq

i of particle q,
with i ∈ {x, y, z}, can be expressed as a first-
order Taylor approximation of the displacement
field evaluated at the neighboring particle p as

uq
i ≈ up

i + up
i,j

(
xq
j − xp

j

)
, (1)

where ui,j represents the spatial derivative of ui

in the j−th direction. Throughout the paper,
summation convention over repeated indices is
implied, unless stated otherwise. For an indi-
vidual, straight fiber within the RVE, with the
fiber ends m and n, the displacement compo-
nents un

i of fiber end n can be expressed as
a first-order Taylor approximation of the dis-
placement field evaluated at the opposite fiber
end m as

un
i ≈ um

i + um
i,j

(
xn
j − xm

j

)
. (2)

In Eq.(1) and (2), the vectors xq and xp des-
ignate the centroid locations of the neighboring
particles q and p, while the vectors xm and xn

indicate the locations of the fiber ends m and n.
In order to discard the effects of rigid body ro-
tations originating from the anti-symmetric part
of the displacement gradients, the displacement
gradients in Eqs.(1) and (2) are replaced by their
symmetric part, i.e., the strain ϵpij and ϵmij . Fol-
lowing the so-called kinematic hypothesis, the
micro-scale strains ϵpij and ϵmij in are replaced
by the average strain across the RVE, i.e., the
macroscopic strain ϵij , which turns Eqs.(1) and
(2) into

δαi = ϵijl
α
j where α ∈ {1, 2, ..., Nc} ,

δβi = ϵijl
β
j where β ∈ {1, 2, ..., Nf} ,

(3)

where δαi represents the effective relative dis-
placement at particle contact α (i.e. the con-
tact between two neighboring particles p and

q) while δβi represents the effective relative dis-
placement between the two ends m and n of a
specific fiber β. The total number of cohesive
particle contacts and fibers within the RVE are
represented by Nc and Nf, respectively. Fur-
ther, lαj = xq

j − xp
j and lβj = xn

j − xm
j denote

the components of the branch vectors connect-
ing the centroids of particles p and q and the lo-
cations of the fiber ends m and n, respectively.

The coupling between the micro-scale and
macro-scale behaviour is established through
the application of the Hill-Mandel micro-
heterogeneity condition [15], which states that
the volume average of the variational work ap-
plied at the boundaries of the RVE is equal to
the local variational work per unit volume at the
macro-scale. Accordingly, for an RVE with vol-
ume V that contains Nc cohesive particle con-
tacts and Nf fibers, the variation of the macro-
scopic work per unit volume δW reads

δW =
1

V

(
Nc∑
α=1

δW α +

Nf∑
β=1

δW β

)
, (4)

where δWα and δW β are the variational work
contributions of particle contact α and fiber
β, respectively. With Eq.(3), these variational
work contributions can be formulated as

δW γ = fγ
i l

γ
j δϵij where γ : α, β, (5)

with fα
i and fβ

i the components of the force
vectors at particle contact α and fiber β, re-
spectively. Here and in the following, the su-
perscript γ refers to α for the a cohesive con-
tact and β for a specific fiber. In order to fur-
ther elaborate Eq.(4), at each particle contact
α and fiber β a local Cartesian coordinate sys-
tem is introduced that is defined by the three
orthonormal base vectors, nγ , sγ , and tγ . Here,
nγ is the unit vector in the normal/axial direc-
tion of the particle contact/fiber, and sγ and tγ
are the unit vectors in the two (mutually per-
pendicular) tangential/transversal directions of
the particle contact/fiber. The right-handed or-
thonormal base vectors {nγ , sγ , tγ} can be ex-
pressed in terms of the orthonormal base vec-
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tors {i, j, k} of the global x-y-z coordinate sys-
tem via

nγ = sin θγ cosϕγ i+ sin θγ sinϕγ j+ cos θγ k ,

sγ = cos θγ cosϕγ i+ cos θγ sinϕγ j − sin θγ k ,

tγ = nγ × sγ = −sinϕγ i+ cosϕγ j ,
(6)

in which θγ ∈ [0, π] and ϕγ ∈ [0, 2π] are the
polar and azimuthal angles defining the individ-
ual particle contact orientations and fiber orien-
tations. With Eq.(6), the effective relative dis-
placements at particle contact α and fiber β can
be written in terms of the components along the
axes of the local coordinate system as

δγn = δγi n
γ
i , δγs = δγi s

γ
i , δγt = δγi t

γ
i . (7)

The magnitude of the effective tangential dis-
placement follows as δγw = ((δγs )

2 + (δγt )
2)1/2.

Here we note that the subscripts n, s, t, and w do
not refer to global coordinate components and
therefore do not follow the summation conven-
tion. The normal and tangential components of
force in particle contact α and fiber β can be
formally expressed as

fγ
n = f̂γ

n (δ
γ
n , δ

γ
w), and fγ

w = f̂γ
w(δ

γ
n , δ

γ
w), (8)

with the superimposed hat denoting a functional
dependency of the contact force. The effective
tangential/transverse force fγ

w can be straight-
forwardly decomposed along the two local tan-
gential/transverse directions sγ and tγ , and ac-
cordingly the force vectors at particle contact α
and fiber β may be expressed in the global x-y-z
coordinate system via

fγ
i = fγ

n n
γ
i + fγ

s s
γ
i + fγ

t t
γ
i . (9)

As a next step, the macroscopic variational
work per unit volume δW appearing in the left-
hand side of Eq.(4) is developed as

δW =
∂W

∂ϵij
δϵij = σij δϵij, (10)

where σij represents the components of the
macroscopic Cauchy stress tensor. Substitut-
ing Eqs.(5) and (10) into the Hill-Mandel condi-
tion, Eq.(4), and considering that the condition

should hold for any arbitrary strain variations
δϵij , the effective, homogenized Cauchy stress
across the RVE can be expressed as

σij =
1

V

(
Nc∑
α=1

fα
i l

α
j +

Nf∑
β=1

fβ
i l

β
j

)
. (11)

In Eq.(11), the macroscopic stress is com-
puted for an RVE containing a finite number of
cohesive particle contacts and fibers, namely Nc

and Nf. For an RVE with sufficiently large num-
ber of particle contacts and fibers, Eq.(11) may
be replaced by an integral expression as

σij =
Nc

V

∫ 2π

ϕ=0

∫ π

θ=0

fα
i lαj ξ

α sin θ dθ dϕ

+
Nf

V

∫ 2π

ϕ=0

∫ π

θ=0

fβ
i lβj ξ

β sin θ dθ dϕ ,

(12)
where ξγ is the probability density function that
represents the directional distribution of the par-
ticle contact and fiber properties [10].

The expression for the macroscopic stress
given by Eq.(12) can be further elaborated by
assuming that the fiber-reinforced concrete con-
sists of equal-sized spherical particles with ra-
dius r and equal-sized cylindrical fibers with
cross-sectional radius R and length L. Ac-
cordingly, the number of cohesive particle con-
tacts per unit volume, Nc/V , and the number of
fibers per unit volume, Nf/V , can be expressed
as

Nc

V
=

3n̄vm

8πr3
and

Nf

V
=

vf

πR2L
, (13)

where n̄ = 2Nc/Np is co-ordination number
representing the average number of contacts per
particle, vf is the volume fraction of fibers, and
vm is the volume fraction of matrix. The macro-
scale Cauchy stress then becomes

σij =
3n̄vm

4πr2

∫ 2π

ϕ=0

∫ π

θ=0

fα
i nj ξ

α sin θ dθ dϕ

+
vf

πR2

∫ 2π

ϕ=0

∫ π

θ=0

fβ
i nj ξ

β sin θ dθ dϕ .

(14)
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The micro-scale forces fα and fβ in the above
equation are prescribed by specific micro-scale
constitutive relations, which are presented in
Section 2.2 below.

2.2 Micro-scale constitutive relations
Upon the application of mechanical load-

ing, the fiber-reinforced concrete at the micro-
scale may experience various damage effects
which are accounted for in the model by ex-
pressing the micro-scale force-displacement re-
lations, Eq.(8), through a damage formulation.
Under tensile loading the constitutive relation
in the normal/axial direction of a cohesive par-
ticle contact α and fiber β is given by

fγ
n = (1−Dγ

n,t)K
γ
n,tδ

γ
n , if δγn ≥ 0, (15)

while under compressive loading it reads

fγ
n = (1−Dγ

n,c)K
γ
n,cδ

γ
n , if δγn < 0. (16)

Further, under shear loading the constitutive re-
lation in the tangential/transversal direction of a
cohesive particle contact α and fiber β reads

fγ
w = (1−Dγ

w)K
γ
wδ

γ
w. (17)

In Eqs.(15) to (17), Kγ
n,t, Kγ

n,c, and Kγ
w are

the initial tensile, compressive, and shear stiff-
ness coefficients, respectively. Further, Dγ

n,t,
Dγ

n,c, and Dγ
w are the tensile, compressive and

shear damage variables, respectively, which are
expressed as functions of deformation history
variables as

Dγ
n,t = D̂γ

n,t(κ
γ
t , κ

γ
w), Dγ

n,c = D̂γ
n,c(κ

γ
c , κ

γ
w),

Dγ
w =

{
D̂γ

w(κ
γ
t , κ

γ
w) if δγn ≥ 0

D̂γ
w(κ

γ
c , κ

γ
w) if δγn < 0

,

(18)
where κγ

t , κγ
c , and κγ

w are the deformation his-
tory variables under tension, compression, and
shear, representing the maximum displacement
experienced during the loading history. The
damage variables may vary between zero and
one, where the initial, zero value corresponds to
the undamaged, elastic state of the micro-scale
constituent, and the value of one reflects the

state at which the constituent fails by a complete
loss of strength and/or an unlimited growth of
deformation.

For modeling the quasi-brittle cracking re-
sponse under tensile loading in Eq.(15), the ten-
sile damage variable and the initial tensile stiff-
ness of particle contact α are specified as

Dα
n,t = 1− exp(− κα

t

Bα
t
) and Kα

n,t = A, (19)

where A denotes the initial tensile stiffness and
Bα

t reflects the normal contact displacement at
which the ultimate tensile strength is reached.
To account for the reduction in the tensile con-
tact force due to damage development under
shear loading, the parameter Bα

t is assumed to
linearly reduce with increasing shear displace-
ment history variable κα

w in accordance with
Figure 1(b).

For simulating material compaction/crushing
under compressive loading, the compressive
damage parameter and the elastic compressive
stiffness of particle contact α are formulated as

Dα
n,c = 1−M

arctan(Aκα
c /M)

Aκα
c

and Kα
n,c = A,

(20)
with A the initial compressive stiffness and M
a parameter that governs the contact’s compres-
sive strength. To account for the strengthening
effect caused by the macroscopic compressive
hydrostatic stress, P = −min(σii/3, 0), on the
cohesive contact, the parameter M is defined as

M = M0

(
1 + α1

(
P

Pref

)α2
)
, (21)

where M0 represents the initial value at P = 0,
α1 and α2 are calibration factors, and Pref is a
reference pressure taken as Pref = 1 MPa.

Finally, for modeling the quasi-brittle crack-
ing response under shear loading, the damage
variable and the elastic stiffness in the tangen-
tial direction of the particle contact α follows

Dα
w = 1− exp(− κα

w

Bα
w
) and Kα

w = C, (22)

where C is the initial shear stiffness and Bα
w is

the tangential contact displacement at which the
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ultimate shear strength is reached. To account
for the reduction in the shear contact force due
to damage development under tension, the pa-
rameter Bα

w is assumed to linearly reduce with
increasing tensile displacement history variable
κα

t in accordance with Figure 1(f). Conversely,
under compressive loading the parameter Bα

w is
constant, Bα

w = α3Bw0, with α3 a calibration
parameter. The micro-scale constitutive rela-
tionships for cohesive contacts, including the
behavior during loading, unloading, and reload-
ing are summarized in Figure 1

At the micro-scale, the contribution of fibers
to the overall mechanical performance of the
fiber-reinforced concrete may be essentially at-
tributed to their behaviour in axial direction.
Assuming the fiber tensile strength to be suf-
ficiently high to prevent fiber rupture, their be-
havior can be characterized by following three
phases: i) elastic bonding, ii) debonding, and
iii) frictional sliding, eventually leading to com-
plete fiber pull-out. During the bonding phase,
the fiber adheres to the surrounding, intact elas-
tic matrix and the axial force in the fiber in-
creases linearly with the relative axial displace-
ment between the fiber ends. After tensile
cracking develops in the surrounding matrix,
the relative axial displacement δβn attains a value
db corresponding to the elastic bonding limit,

fβ
n = fb, at which the fiber starts to debond

from the matrix through the development of a
delamination crack. The mechanical resistance
of the fiber against deformation then reduces,
and is determined by a combination of interfa-
cial decohesion and frictional sliding along the
debonded zone and elastic bonding along the
intact parts. Once the delaminating crack has
reached the ends of the fiber, the fiber becomes
fully debonded from the matrix, which occurs
when the relative axial displacement is δβn = dd

and the axial fiber force has reached the value
fβ

n = fd. The fiber is then gradually pulled out
of the matrix and its mechanical resistance is
entirely controlled by the frictional sliding mo-
bilized along the actual contact area with the
matrix. The axial force fβ

n monotonically de-
creases as the frictional contact area between
fiber and matrix reduces and eventually van-
ishes at complete fiber pull-out, which occurs
when the the relative axial displacement reaches
δβn = ds. Figure 2(a) demonstrates the idealized
fiber tensile failure response discussed above,
along with the elastic unloading and reloading
branches. The three distinct response phases
under tensile loading can be modeled with the
damage formulation Eq.(15), by expressing the
tensile damage variable and the elastic tensile
stiffness in the axial direction of fiber β as

Dβ
n,t =



0 if 0 ≤ κβ
t < db

1−
((

fbdd − fddb

fb(dd − db)

)
db

κβ
t

+

(
(fd − fb)db

fb(dd − db)

))
if db ≤ κβ

t < dd

1−
(

fddb

fb(ds − dd)

)(
ds

κβ
t

− 1

)
if dd ≤ κβ

t < ds

1 if κβ
t ≥ ds

and Kβ
n,t =

fb

db
. (23)

The strengthening effect on the fiber tensile
response caused by the macroscopic compres-
sive hydrostatic stress P is accounted for by
defining the parameters fb and fd as

fb = fb0

(
1 + α4

(
P

Pref

))
fd = fd0

(
1 + α4

(
P

Pref

)) (24)

where fb0 and fd0 are the initial parameter val-
ues corresponding to zero compressive hydro-
static stress, and α4 is a calibration factor.

The compressive failure response of individ-
ual fibers is characterized by different failure
modes, including elastic microbuckling, plastic
microbuckling and/or fiber crushing. For sim-
plicity, in the present work the different fail-
ure modes are simulated by one and the same,

6



Pouriya Pirmoradi, Akke S.J. Suiker and Payam Poorsolhjouy

generic, limit load model, which is composed of
an initial, elastic branch and a horizontal fail-
ure branch. The compressive damage variable
in the damage model Eq.(16) is defined accord-
ingly as

Dβ
n,c =


0 if dc,u ≤ κβ

c ≤ 0 ,

1− dc,u

κβ
c

if κβ
c < dc,u ,

(25)

while the elastic compressive stiffness of a fiber
reads

Kβ
n,c =

fc,u

dc,u
. (26)

Here, fc,u is the ultimate compressive strength
at which the elastic response ends and the fiber
collapses, and dc,u is the corresponding rela-
tive axial displacement between the fiber ends.
The microscopic constitutive relationships for
fibers, including the behavior during loading,
unloading, and reloading are summarized in
Figure 2.

The current micro-scale constitutive model
in total consists of 18 material parameters, in-
cluding 9 material parameters for describing
the tensile behaviour of particles and fibers, 5
material parameters for defining their compres-
sive behaviour, and 4 material parameters for
characterizing the shear behaviour of particles.
For a specific mix design of the fiber-reinforced
concrete, the micro-scale material parameters
are determined via a calibration procedure us-
ing macroscopic test results, which are shown
in Section 3.

2.3 Numerical implementation procedure
The developed hierarchical multi-scale

model is implemented to analyze practical
boundary value problems for fiber-reinforced
concrete structures. In each macroscopic in-
tegration point (or material point) mechanical
equilibrium should be satisfied under the ap-
propriate boundary conditions, which, in the
absence of body forces, reads

∇ · σ = 0 , (27)

with ∇· the divergence operator. Since the
micro-scale material behaviour is inelastic and

path-dependent, the macroscopic stress σ must
be computed in an incremental fashion, by step-
wisely loading the FEM domain from its initial
state to the actual state of deformation. Accord-
ingly, consider an individual macroscopic load-
ing step, expressed in an integration point by the
change in strain going from step n to step n+1:

ϵn+1 = ϵn + ∆ϵn+1 , (28)

with ∆ϵn+1 the incremental strain at the cur-
rent step n+ 1. From the strain update ϵn+1,
the multi-scale failure model calculates the cor-
responding stress update σn+1 in an integration
point as follows. First, ϵn+1 is inserted in Eq.(3)
to compute the displacements at the particle
contacts and fibers in the global, macroscopic
Cartesian coordinate system. Next, by applying
Eq.(7), these displacements are converted to the
local Cartesian coordinate system of each parti-
cle contact and fiber. From these displacement
components, the corresponding force compo-
nents at the local coordinate system are com-
puted via the micro-scale constitutive relations,
Eqs.(15) to (17). This step requires updating the
tensile, compressive, and shear damage vari-
ables which follow from the updates of the cor-
responding history variables in accordance with
the micro-scale constitutive models presented
in Sections 2.2. Next, the updated force com-
ponents are converted to the global coordinate
systems using Eq.(9), and subsequently inserted
in Eq.(14) to compute the macroscopic stress
σn+1 in the integration point. The surface in-
tegrals in Eq.(14) for computing macroscopic
stress are computed numerically using Lebe-
dev quadrature. The above procedure is per-
formed for all integration points in the simu-
lated FEM domain, where the updated stresses
σn+1 are transferred to the system level of the
FEM simulation. In addition, the components
of the consistent tangent operator are updated
as Cijkl = dσij/d ϵkl using the numerical per-
turbation method formulated in [12]. The stress
and tangent components are then transferred to
the system level to compose the internal force
and structural stiffness matrix in the global sys-
tem of equilibrium equations. When the system
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of global equilibrium equations has converged
within a prescribed tolerance, the implicit up-
date procedure is repeated for the next incre-
mental loading step, as expressed by Eq.(28).

3 NUMERICAL RESULTS
The main characteristics of the multi-scale

model presented in the previous section are
demonstrated by performing simulations on the
failure behaviour of fiber-reinforced concrete
samples subjected to uniaxial tensile test. Fig-
ures 3 illustrates the results (solid lines) for uni-
axial tension tests on concrete specimens rein-
forced by PVA fibers with volume fractions of
vf = 2%, 3% and 6%, and for a uniaxial tensile
test on a plain concrete specimen. The results
are plotted together with the experimental data
(open circles) reported in [13].

In the numerical simulations, the uniax-
ial tensile loading is applied displacement-
controlled, where the effective normal strain ϵ1
in the axial direction is increased stepwisely,
and the normal stresses are zero on the lateral
sample surfaces, σ2 = σ3 = 0. The numerical
results are computed using the material param-
eter values listed in Table 1. In addition, The
values for the fiber length, L = 32 mm, fiber ra-
dius, R = 0.4 mm, and average particle radius
are taken from [13]. Further, the average co-
ordination number n̄ = 8 is chosen as a repre-
sentative value for a cementitious matrix and a
value of air void content vv = 3% is selected in
the numerical simulations. In the experimen-
tal samples the aggregates and fibers are dis-
tributed randomly, so that the particle contacts
and fibers follow a uniform directional distribu-
tion, ξα = ξβ = 1/(4π). The results in Figure 3
clearly show that an increase of the fiber volume
fraction leads to an increase of both the ultimate
tensile strength and the ductility of the sample.

The directional distribution of fibers in fiber
reinforced concrete depends on the production
and construction processes, and thus under spe-
cific process conditions may be (strongly) non-
uniform. For instance, in 3D printed fiber-
reinforced concrete structures the fibers show
an orientation preference in the printing direc-

tion caused by the extrusion processes. The ef-
fect of different fiber direction distributions on
the uniaxial tensile response of fiber-reinforced
concrete can be explored by varying the prob-
ability density function of fiber ξβ . Accord-
ingly, three different fiber direction distribu-
tions are considered, namely: Case (1): a uni-
form fiber orientation distribution, Case (2): a
distribution where the fibers are predominantly
oriented in the loading direction, and Case (3):
a distribution where the fibers are predomi-
nantly oriented perpendicular to the loading di-
rection. For Cases (2) and (3), the probabil-
ity density function of fibers is described by
a transversely isotropic distribution oriented in
the corresponding direction as

ξβ(θ) =
3 cos2 θ

4π
. (29)

Figure 4 shows the uniaxial stress-strain re-
sponses computed for concrete samples rein-
forced by vf = 3% of PVA fibers, applying the
three different fiber direction distributions de-
scribed above. This figure demonstrates that the
sample with the fibers oriented in the loading di-
rection are characterized by the highest secant
stiffness and highest ultimate tensile strength,
followed by the sample with the uniform fiber
orientation distribution, and finally the sample
with the fibers oriented perpendicular to the
loading direction. In addition, the sample with
the fibers oriented in the loading direction show
an almost constant maximum stress under in-
creased deformation, while the other two sam-
ples are characterized by a softening response.
These features arise from the increased contri-
bution to the tensile response by crack-bridging
fibers, and are in agreement with other experi-
mental results [14].

4 Concluding remarks
A multi-scale constitutive model is devel-

oped for the efficient computational analysis of
fiber-reinforced concrete structures. In a macro-
scale material point the effective constitutive re-
sponse of the fiber-reinforced concrete material
is calculated by homogenizing the micro-scale
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behaviour of its three constituents – fibers, co-
hesive particles and air voids – across a repre-
sentative volume element. The constitutive con-
tact law for the cohesive particles accounts for
the fracture behaviour under intergranular ten-
sion and shear, and the compaction/crushing be-
haviour under intergranular compression. For
the fibers, the tensile constitutive law is char-
acterized by an initial elastic bonding between
fiber and matrix, followed by fiber debond-
ing and sliding and eventually complete pull-
out. Under compression, the constitutive be-
haviour of fibers is determined by an initial,
elastic branch, which continues into a failure
branch that captures their combined buckling
and crushing behaviour. The orientation distri-
butions of the particle contacts and fibers are de-
fined by separate probability density functions,
and the effective Cauchy stress in a macro-
scale material point is calculated by apply-
ing the Hill-Mandel micro-heterogeneity con-
dition. Using an incremental-iterative update
algorithm, the hierarchical multi-scale constitu-
tive model is implemented within a Finite Ele-
ment Method (FEM) framework. The applica-
bility of the multi-scale model is exemplified by
performing simulations of fiber-reinforced con-
crete samples under uniaxial tension tests. The
numerical results illustrate how the structural
response is influenced by the changes in the
volume fraction and orientation distribution of
fibers. The significance of the results is demon-
strated through a comparison with experimental
data reported in the literature.

The present model enables the efficient nu-
merical simulation of practical boundary value
problems, where, for a fiber-reinforced mate-
rial with given constitutive properties, it allows
to adequately predict the effects of fibers con-
tent, fiber orientation distribution, loading and
boundary conditions, and structural geometry
on the mechanical response. In this way, the
multi-scale model may be utilized as an en-
gineering tool for the practical analysis of the
complex failure behaviour of fiber-reinforced
concrete structures.
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Particle contacts PVA fibers

A [N/mm] 1.35× 105 vf [%] 2 3 6

B0 [mm] 2.62× 10−4
fb0 [N] 20.4 20.4 13.2

κw,cr [mm] 7.82× 10−3
db [mm] 7.86× 10−4 7.86× 10−4 7.86× 10−4

M0 [N] -124.3 fd0 [N] 102.0 102.0 65.7
α1 [-] 0.296

dd [mm] 1.57× 10−2 1.57× 10−2 1.57× 10−2

α2 [-] 1
ds [mm] 7.86× 10−1 7.86× 10−1 7.86× 10−1

C [N/mm] 8.11× 104
fc,u [N] -102.0 -102.0 -102.0

Bw0 [mm] 5.24× 10−4

dc,u [mm] −3.93× 10−3 −3.93× 10−3 −3.93× 10−3

κt,cr [mm] 3.91× 10−3

α4 [-] 2.96× 10−2 2.96× 10−2 2.96× 10−2

α3 [-] 4

Table 1: Micro-scale material parameters for the particle contacts defining the cementitious matrix and the PVA fibers
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Figure 1: Micro-scale constitutive relationships at particle contact α. (a) Tensile contact force fα
n versus normal contact

displacement δαn . (b) Tensile contact parameter Bα
t versus tangential contact displacement δαw . (c) Compressive contact

force fα
n versus normal contact displacement δαn . (d) Compressive strengthening parameter M versus hydrostatic pressure

P . (e) Shear contact force fα
w versus tangential contact displacement δαw . (f) Shear contact parameter Bα

w versus normal
contact displacement δαn .
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Figure 2: Micro-scale constitutive relationships of fiber β. (a) Tensile fiber force fβ
n versus relative axial displacement

δβn . (b) Elastic bonding limit fb versus hydrostatic pressure P . (c) Debonding limit fd versus hydrostatic pressure P . (d)
Compressive fiber force fβ

n versus relative axial displacement δβn .
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Figure 3: FEM results (solid lines) and experimental data (open circles) [13] for the uniaxial tensile response of concrete
specimens reinforced by PVA fibers with a uniform fiber orientation distribution. The fiber volume fractions are equal to
vf = 2%, 3% and 6%. Additionally, the response for a uniaxial tensile test on a plain concrete specimen, vf = 0%, is
depicted.
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Figure 4: FEM results for the uniaxial tensile response of concrete specimens reinforced by PVA fibers (vf = 3%)
with three different directional distributions (as indicated in the right image), i.e., Case (1): a uniform fiber orientation
distribution, Case (2): a distribution where the fibers are predominantly oriented in the loading direction, and Case (3): a
distribution where the fibers are predominantly oriented perpendicular to the loading direction.
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