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Abstract: For large-scale infrastructure, such as concrete dams, a non-destructive and non-contact 

testing method is essential for estimating subsurface damage.  Passive infrared thermography is an 

effective technique for detecting this type of damage, relying on heat capacity differences within the 

concrete.  Since surface temperature distribution irregularities correlate with crack propagation and 

material degradation, passive infrared thermography can be applied to assess damage progression in 

concrete structures.  This study investigates the relationship between thermal responses and 

subsurface damage using a combination of heat balance analysis and deep learning models, 

contributing to the field of fracture mechanics and structural integrity assessment.  In this study, the 

thermal behavior of a concrete dam is analyzed using heat balance modeling and Long Short-Term 

Memory (LSTM) to assess subsurface damage.  Measured and predicted surface temperatures at 

exudation and non-damaged points are compared to investigating the correlation between thermal 

distribution irregularities and exudation.  The results indicate that a higher estimation accuracy is 

achieved by LSTM compared to heat balance analysis, as shadow effects, latent heat transfer and 

moisture dynamics are implicitly considered—factors affecting surface temperature distribution.  

Through these analyses, the potential of passive infrared thermography is validated as a non-

destructive method for monitoring and assessing structural integrity in large-scale concrete 

infrastructure. 

 

1 INTRODUCTION 

Dams have been a significant role in 

ensuring a stable supply of water for flood 

control, irrigation, drinking water, livestock 

and hydraulic power generation [1].  Most large 

dams were constructed after the 1950s, and the 

number of new dam constructions declined 

around the 1990s, with the exception of South 

America [2].  The performance of these 

structures can deteriorate over time due to long-

term service, environmental factors, 

operational loads, and accumulated damage 
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from extreme events such as earthquakes.  

Crack propagation, material fatigue and 

moisture ingress are key factors in the 

degradation of concrete structures, requiring 

advanced monitoring techniques for early 

damage detection.  Some countries face 

challenges in managing aging dams due to 

inadequate funding [3].  Infrared thermography, 

combined with numerical modelling and deep 

learning, provides a powerful approach for 

evaluating the progression of subsurface 

damage over time.  This study aims to bridge 

the gap between thermal analysis and fracture 

mechanics, supporting predictive maintenance 

strategies for large-scale concrete 

infrastructure.  Elastic wave techniques are 

commonly used for the inspection of concrete 

structures as a non-destructive testing method.  

However, their application to large-scale 

structures is challenging due to issues related to 

accessibility and comprehensiveness.  Passive 

infrared thermography is an optimal technique 

for detecting subsurface defects over a wide 

area at once [4].  Thermography techniques 

utilize the heat capacity of materials, and in 

general, the contrast in surface temperature can 

indicate subsurface damage in concrete 

structures.  Previous studies have focused on 

effective time windows for infrared 

thermography, as the contrast in surface 

temperature changes over time due to 

environmental and weather conditions [5].  

These efforts have primarily been applied to 

concrete specimens to investigate the 

relationship between time and detectability.  

However, time is not a significant factor 

affecting surface temperature in the context of 

in-service concrete structures.  The surface 

temperature of concrete is mainly determined 

by weather conditions, heat conduction into the 

concrete, subsurface damage and surface 

conditions.  Therefore, the heat balance of 

concrete needs to be calculated to estimate 

subsurface damage accurately.   

In this study, the surface temperature of 

concrete, measured by passive infrared 

thermography, is verified through heat balance 

analysis and a deep learning method.  The 

proposed method is applied to an in-service 

hollow gravity-type concrete dam, where 

prediction accuracy and surface temperature 

contrast are compared.  The heat balance 

analysis calculates the surface temperature by 

considering weather conditions and heat 

conductivity.  Additionally, a deep learning 

method for sequential data, Long Short-Term 

Memory (LSTM) [6], is used to implicitly train 

the relationship between surface temperature 

and weather data.  

2 ANALYTICAL PROCEDURES 

The surface temperature of concrete is 

calculated using heat balance analysis and 

LSTM, with incorporated weather data.  To 

assess the impact of cracking and moisture 

ingress on heat transfer mechanisms, the 

correlation between thermal distribution 

irregularities and structural degradation is 

analyzed.  These methods are calibrated using 

measured surface temperature data obtained 

from a thermocouple.  The prediction accuracy 

is evaluated by Mean Absolute Error (MAE), 

which is a comparison of heat balance analysis 

and LSTM results.   

2.1 Heat balance analysis 

The heat balance of the concrete surface is 

expressed by equation (1).  

𝑅𝑛 = 𝐻 + 𝐺, (1) 

where, 𝑅𝑛  is the net radiation (W/m2), 𝐻 is the 

sensible heat transfer (positive upward, W/m2) 

and 𝐺  is the ground conduction heat (positive 

downward, W/m2). 

 
Figure 1: Heat balance analysis. 
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𝑅𝑛 = (1 − 𝑟𝑒𝑓)𝑆↓ − 𝜖(𝜎𝑇𝑆
4 − 𝐿↓), (2) 

where, 𝑟𝑒𝑓 is the albedo, 𝑆↓  is the total solar 

radiation on the slope (W/m2), 𝜖  is the 

emissivity (black body degree), 𝑇𝑆  is the 

concrete surface temperature (K), 𝜎  is the 

Stefan-Boltzmann constant (5.67×10-8 W/(m2

・K4)), and 𝐿↓ is the longwave radiation from 

the atmosphere that does not include solar 

radiation (W/m2).  The albedo is the ratio of the 

reflected light flux to the incident light flux 

when radiation is incident on an object.  In this 

study, the latent heat transfer is ignored, 

therefore, the effect of rainfall is not assumed.  

The surface temperature is calculated assuming 

that weather conditions, concrete surface 

parameters (albedo and emissivity) and thermal 

properties (specific heat, density and thermal 

conductivity of concrete and air) are known.  

The sensible heat transfer 𝐻  is shown in 

equation (3). 

𝐻 = 𝑐𝑎𝜌𝑎𝐶𝐻𝑈(𝑇𝑆 − 𝑇𝑎), (3) 

where, 𝑐𝑎  is the specific heat at constant 

pressure of air (J/(K・kg)), 𝜌𝑎 is the density of 

air (kg/m3), 𝐶𝐻𝑈  is the exchange rate of 

sensible heat transfer and 𝑇𝑎  is the air 

temperature.  The exchange rate varies 

depending on the type of surface , difference in 

roughness, the surface is treated as bare ground 

and the following equation is used in this study, 

𝐶𝐻𝑈 = 0.0027 + 0.0031𝑈. (4) 

The heat conduction differential equation for 

the internal temperature 𝑇𝐺  of concrete is 

shown in the following equation. 

𝜕𝑇𝐺
𝜕𝑡

=
𝜆𝑐
𝑐𝑐𝜌𝑐

𝜕2𝑇𝐺
𝜕𝑧2

, (5) 

where, 𝜆𝑐  is the thermal conductivity of 

concrete (W/(m・K)), 𝑐𝑐 is the specific heat at 

constant pressure of concrete (J/(K・kg)), 𝜌𝑐 is 

the density of concrete (kg/m3), 𝑡 is time (s), 

and 𝑧 is depth (m). 

The conduction heat 𝐺(𝑧)  in concrete at 

depth 𝑧  from the surface is expressed by the 

following equation, 

𝐺(𝑧) = 𝜆𝑐
𝑑𝑇𝐺
𝑑𝑧

. (6) 

On the other hand, by integrating the equation 

obtained by rewriting equation (5): 

𝜕𝐺(𝑧)

𝜕𝑧
= −

𝑑

𝑑𝑡
(𝑐𝑐𝜌𝑐𝑇𝐺). (7) 

By integrating this, the conductive heat 𝐺 at the 

concrete surface is obtained. 

𝐺 ≡ 𝐺(𝑧=0) = ∫
𝑑(𝑐𝑐𝜌𝑐𝑇𝐺)

𝑑𝑡
𝑑𝑧

𝐷

0

, (8) 

where, 𝐷  is the depth (m) at which thermal 

conduction becomes zero.  In this study, 𝐷 is 

set to 1.0 m, which is the depth of actual 

embankment and the point where 𝑧  = 𝐷  is 

considered to be the deepest point in the heat 

balance analysis. 

To calculate the total solar radiation on the 

slope, the total solar radiation on the horizontal 

surface is separated into direct solar radiation 

on the horizontal surface that reaches the 

concrete surface directly from the sun and 

diffuse solar radiation on the horizontal surface 

(direct and diffuse separation), and then the 

solar radiation on the slope (direct solar 

radiation on the slope, diffuse solar radiation on 

the slope and reflected solar radiation on the 

concrete surface) is calculated taking into 

account the inclination of the structure.  Diffuse 

solar radiation is solar radiation that is scattered 

by particles in the atmosphere as it passes 

through the Earth's atmosphere and reaches the 

earth's surface from the entire sky. 

The direct and diffuse separation is shown 

in the following equation. 

𝐼𝐺 = 𝐼𝑏 + 𝐼𝑑 , (9) 

where, 𝐼𝐺  is the total solar radiation on the 

horizontal surface (W/m2), 𝐼𝑏 is the direct solar 

radiation on the horizontal surface (W/m2) and 

𝐼𝑑 is the diffuse solar radiation on the horizontal 

surface (W/m2). 

Conversion from horizontal direct solar 

radiation to inclined direct solar radiation is 

calculated by following equation. 

𝐼𝑇,𝑏 = 𝐼𝑏 cos 𝑖 , (10) 
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where, 𝐼𝑇,𝑏  is the amount of direct solar 

radiation on the slope (W/m2) and 𝑖 is the angle 

of incidence of direct solar radiation.  The 

conversion coefficient for direct solar radiation 

on a horizontal surface to inclined direct solar 

radiation is shown in the following equation 

based on the relationship between the sun's 

position and the slope. 

cos 𝑖 = cos 𝛽 sin ℎ + sin 𝛽 cos ℎ cos(𝐴𝑆 − 𝐴𝑊), (11) 

where, 𝛽  is the inclination angle of the slope 

relative to the horizontal surface, ℎ is the solar 

altitude, 𝐴𝑆 is the solar azimuth angle and 𝐴𝑊 

is the azimuth angle of the slope. 

The Erbs model is used to separate the direct 

and diffuse solar radiation [7]. 

𝐼𝑇,𝑑 = 𝐼𝑑𝐹, (12) 

where, 𝐼𝑇,𝑑  is the amount of inclined diffuse 

solar radiation (W/m2) and 𝐹 is a function that 

expresses the proportion of inclined diffuse 

solar radiation to the horizontal diffuse solar 

radiation. 

The amount of reflected solar radiation on 

the concrete surface is calculated using a 

uniform distribution model that assumes that 

the radiance distribution of the sky is uniform. 

𝐼𝑇,𝑟 = 𝐼𝐺
1 − cos𝛽

2
𝑟𝑒𝑓, (13) 

where, 𝐼𝑇,𝑟is the reflected solar radiation on the 

concrete surface (W/m2). 

The total solar radiation on the slope is 

calculated using equations (10), (12), and (13). 

𝑆↓ = 𝐼𝑇,𝑏 + 𝐼𝑇,𝑑 + 𝐼𝑇,𝑟 . (14) 

2.2 Long Short-Term Memory (LSTM) 

To estimate the concrete surface temperature 

based on meteorological data, LSTM is applied.  

LSTM, a variant of the recurrent neural network 

(RNN) developed for sequential data, is capable 

of learning long-term dependencies and is 

widely used.  Although many variants of LSTM 

have been proposed, none have been shown to 

significantly outperform simple LSTM 

architecture.  Therefore, the model proposed by 

Hochreiter and Schmidhuber (1997) is adopted 

[6].  

For prediction using LSTM, data from July 

2023 to May 2024, is used as training and 

validation data, while data from June 2024 to 

October 2024, is used as test data.  The 

meteorological data used to predict surface 

temperature consists of 11 items: solar 

radiation, precipitation, relative humidity, air 

temperature, barometric pressure, wind speed, 

wind gust, wind direction, lightning strikes, 

average lightning distance and downward 

longwave radiation.  The adjusted 

hyperparameters are window size, batch size, 

hidden size, number of layers and epoch.  The 

window size represents the length of the input 

sequence.  Hidden size indicates the 

dimensionality of the hidden states.  Larger 

values enable the learning of more complex 

patterns but increase computational costs.  Num 

layers indicates the number of LSTM layers, 

adjusting the model's expressive capacity. 

Epoch specifies the number of iterations the 

dataset passes through during training.  While 

increasing the number of epochs improves the 

fit to the training data, exceeding an appropriate 

value risks overfitting.  Hyperparameter tuning 

is performed manually to explore the 

combination that minimizes error.  

3 MEASUREMENT PROCEDURE 

A series of measurements were conducted at 

a hollow gravity-type concrete dam.  The 

surface temperature of the concrete was 

measured using a thermocouple and passive 

infrared thermography as continuous 

observations.  Meteorological data were 

recorded for the same period.  

3.1 Measurement structure 

The measurement structure is a hollow 

gravity-type concrete dam, as shown in Figure 

2.  This dam was constructed in 1974. No 

surface damage is evident, however, damage 

resulting from freeze-thaw cycles is observed in 

part of the structural concrete.  Exudation is 

visible on the embankment surface on the left 

side, as shown in Figure 3.  The concrete 

surface of interest in this study is the 

embankment of the dam structure, which faces 

downstream.  The surface temperature, 

measured using a thermocouple, was recorded 
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at a point on the embankment on the right side 

of the bank (refer to "Thermocouple" in Figure 

2).  The area of interest for infrared 

thermography encompasses the embankment 

surface from the center to the left side of the 

bank.  

3.2 Measurement of surface temperature 

A K-type thermocouple was attached to the 

concrete surface, with the junction adhered 

using a cement-based adhesive.  Temperature 

data were recorded at 10-minute intervals and 

logged by a data logger.  

3.3 Passive infrared thermography 

Passive infrared thermography 

measurements were conducted using a thermal 

camera (Zenmuse XT2, FLIR) mounted on a 

UAV (Matrice 210, DJI).  The measurement 

interval was set to 1 hour, with measurements 

taken between 9 a.m. and 4 p.m., once per 

month. 

3.4 Meteorological measurements 

Weather data were recorded by an ATMOS-

41 Weather Station (METER). The weather 

data items included solar radiation, 

precipitation, relative humidity, air temperature, 

barometric pressure, wind speed, wind gust, 

wind direction, lightning strikes, average 

lightning distance and downward longwave 

radiation.  The measurement interval was set to 

10 minutes.  The weather station was installed 

at the crest of the dam. 

4 RESULTS AND DISCUSSION 

4.1 Meteorological conditions surrounding 

concrete dam 

The sequential changes in surface 

temperature, measured by the thermocouple 

and meteorological data are shown in Figure 4.  

The horizontal axis index indicates the 

measurement points at 10-minute intervals.  

The trends in surface temperature, solar 

radiation, precipitation, wind speed and air 

temperature exhibit a seasonal pattern with 

peaks and troughs occurring each year.  The 

global trends in surface and air temperature are 

closely matched, with the surface temperature 

consistently higher than the air temperature.  

Solar radiation increases gradually, with 

fluctuations corresponding to changes in both 

surface and air temperature.  While the seasonal 

variation in precipitation is unclear, the 

likelihood of substantial rainfall is low.  The 

change in wind speed tends to be inversely 

correlated with the other parameters. 

4.2 Calculation of surface temperature by 

heat balance analysis and LSTM 

The thermal properties of concrete are 

calibrated using a grid search within the range 

of reference values for heat balance analysis.  

The calibrated values for density, specific heat, 

conductivity, emissivity, and albedo of concrete 

are 2,400 kg/m³, 1,260 J/kgK, 1.4 W/mK, 0.96, 

and 0.4, respectively.  The prediction results of 

surface temperature, obtained through both heat 

balance analysis and LSTM, are shown in 

 
Figure 2: Hollow gravity-type of concrete dam. 

 
Figure 3: Exudation on the left side embankment. 
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Figures 5 and 6.  The mean absolute error 

(MAE) between measured and calculated 

values is presented in Table 1.  The MAE for 

heat balance analysis and LSTM are 2.3 and 

1.3°C, respectively.  The MAE for the training, 

evaluation, and test data in LSTM are 1.2°C, 

2.1°C and 1.1°C, respectively.  The MAE for 

heat balance analysis is higher than that for 

LSTM.  In most cases, the calculated values 

from the heat balance analysis are higher than 

the measured values from the thermocouple.  

The surface temperature calculated by heat 

balance analysis follows the peak of the daily 

change.  However, the surface temperature 

calculated by LSTM does not reach the peak of 

daily changes.  Both heat balance analysis and 

LSTM are capable of reproducing the overall 

trend of surface temperature.  These results 

suggest that LSTM effectively learns the 

features of surface temperature using 11 

meteorological data items and can reproduce 

the measured surface temperature of concrete.  

In this study, solar radiation, wind speed, 

downward longwave radiation and air 

temperature are considered in the heat balance 

analysis.  Shadow effects are observed on the 

actual concrete surface, as the dam 

embankment faces west and shadowing by trees 

is apparent in the evening.  However, shadow 

effects and latent heat transfer are not 

considered in the analysis, which results in 

lower accuracy in the reproduction of surface 

temperature.  Deep learning methods for time-

series data are effective for estimating concrete 

surface temperature using weather data.  In 

contrast, heat balance analysis that incorporates 

shadow effects and latent heat transfer has the 

potential to more accurately estimate concrete 

surface temperature. 

4.3 Validation of passive infrared 

thermography by heat balance analysis and 

LSTM 

The comparison between the measured 

concrete surface temperature by passive 

infrared thermography and the calculated 

values by heat balance analysis and LSTM is 

shown in Figure 7.  Missing data points are 

indicated by the cancellation of flights due to 

 
Figure 4: Sequential change of surface temperature by 

the thermocouple and meteorological data 
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rainfall for samples No. 7, 8, 9, and 12.  The 

surface temperature at the exudation point, 

measured by the infrared camera, is lower than 

that of the non-damaged point during the 

periods of No. 1 and No. 9. For most other 

periods, the surface temperature at the 

exudation point is higher than at the non-

damaged point.  The extraction point for surface 

temperature from the infrared image is located 

on the left side of the embankment, while the 

thermocouple is set on the lower right side.  

When water is not trickling from the exudation 

point, the surface temperature at the exudation 

point is typically higher than at the non-

damaged point.  As discussed in section 4.2, the 

prediction accuracy by heat balance analysis is 

lower than that of LSTM.  The surface 

temperature trend for sample No. 1, where 

exudation phenomena are confirmed, is shown 

in Figure 7(b).  The calculated surface 

temperature by LSTM closely matches the 

measured surface temperature at the non-

damaged point, as recorded by both the 

thermocouple and the infrared camera.  The 

 

Figure 5: Calculation result of concrete surface temperature by heat balance analysis. 

 

Figure 6: Calculation result of concrete surface temperature by LSTM. 
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relationship between the difference in surface 

temperature between the exudation point and 

the non-damaged point, and the estimated 

accuracy of both methods, is presented using 

the mean absolute error (MAE) in Table 2.  The 

MAE between the surface temperature at the 

exudation and non-damaged points is 8.0°C.  

The MAE between the measured surface 

temperature from the infrared camera and the 

calculated surface temperature by heat balance 

analysis and LSTM are 5.6°C and 3.5°C, 

respectively.  The prediction accuracy of both 

methods is sufficient to distinguish surface 

temperature changes between the non-damaged 

and exudation points.  These results confirm 

that both heat balance analysis and LSTM are 

effective in reproducing concrete surface 

temperature and validating passive infrared 

thermography.  Prediction accuracy by LSTM 

is higher than heat balance analysis since 

shadow effects and latent heat transfer, which 

are not included in the heat balance analysis, are 

considered by LSTM.  This suggests that 

complex relationships between environmental 

factors and material degradation can be 

implicitly learned by deep learning-based 

models.  The results demonstrate that surface 

temperature variations detected via passive 

 
(a) For two years period except for winter season 

 
(b) Zoom up for period of No. 1 

Figure 7: The comparison of measured surface temperature by passive infrared thermography and calculation value 

by heat balance analysis and LSTM. 
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infrared thermography can serve as an indicator 

of crack formation and internal damage, 

consistent with the principles of fracture 

mechanics. 

5 CONCLUSIONS 

A reliable framework for predicting concrete 

surface temperature and validating passive 

infrared thermography is provided by the heat 

balance analysis and LSTM.  This study 

contributes to the field of fractured mechanics 

by demonstrating that irregularities in thermal 

distribution can be associated with damage 

progression in concrete structures.  The 

findings support the integration of passive 

infrared thermography-based monitoring with 

numerical simulations for long-term structural 

assessments, which enhances predictive 

maintenance strategies for aging infrastructure.  

While LSTM offers higher accuracy and 

flexibility, heat balance analysis retains value 

for understanding thermal properties and 

physical phenomena.  Future advancements, 

such as incorporating shadow effects and latent 

heat transfer into heat balance analysis, could 

further improve prediction accuracy.  With 

validation from these methods, passive infrared 

thermography proves to be a reliable tool for 

monitoring surface temperature and detecting 

damage in concrete structures. 
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