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Abstract. Mesoscale discrete lattice models offer a direct way to incorporate the heterogeneous mi-
crostructure of concrete and other geomaterials efficiently, using vector-based constitutive laws with
homogeneous material parameters. These models exhibit stress oscillations, which, if deemed non-
physical, can be suppressed using methods such as auxiliary stress projection or deviatoric-volumetric
decomposition to produce homogeneous elastic stress fields. This study examines the elastic behav-
ior of the homogenized models with controlled heterogeneity introduced via spatial randomization of
material parameters, with an emphasis on the replication of the oscillations in the non-homogenized
discrete model. Simulations with varying degrees of spatial correlation under different macroscopic
loading conditions reveal that the original stress oscillations are best replicated with spatially inde-
pendent randomization. However, none of the techniques fully reproduce the original oscillations.

1 INTRODUCTION

Discrete models, particularly particle-based
lattice models, have proven effective in mod-
eling the fracture behavior of materials with
heterogeneous microstructures [1, 2, 3]. Ad-
vanced models like the Lattice Discrete Parti-
cle Model (LDPM) excel in simulating vari-
ous structural configurations and loading sce-
narios [4, 5]. Modern approaches also cou-
ple mechanical models with other physical or
chemical phenomena [6, 7].

Unlike continuum methods, particle-based
models use vectorial constitutive relations at
particle contacts, often resulting in stress os-
cillations [8]. These oscillations, shaped by
physical discretization of the domain based on

material heterogeneity [9], can aid in simulat-
ing phenomena like concrete compressive fail-
ure [10], though this approach has deficien-
cies such as restricted macroscopic Poisson’s
ratio [11]. Non-physical discretization, com-
bined with methods like volumetric-deviatoric
decomposition [12] or auxiliary stress projec-
tion [13], eliminates these oscillations but re-
duces the model’s ability to represent hetero-
geneity.

This study builds on previous work [8], ex-
ploring whether controlled randomization can
recover elastic stress oscillations typical for
physical discretization.
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2 SIMULATION FRAMEWORK
The three-dimensional discrete models used

here represent concrete at the mesoscale, dis-
tinguishing aggregate inclusions and cementi-
tious binders as separate phases. Aggregates are
randomly distributed based on specified volume
fractions and size distributions, with Delaunay
triangulation and power tessellation defining
rigid bodies and contact elements. Each con-
tact element, connecting two nodes, has a de-
fined area, length, and a local reference sys-
tem (N,M,L), with displacements and rota-
tions forming the degrees of freedom.

The models are governed by balance equa-
tions for linear and angular momentum, which
sum element reactions (t) and moments of these
tractions, with constitutive relations defining
elastic behavior and kinematic equation pro-
viding strain measures (e). Three constitutive
model variants are considered.

2.1 Constitutive models
Variant S: A standard model with elastic

parameters E0 and α with approximate rela-
tions to macroscopic elastic parameters E and
ν. Parameter α determines the macroscopic
Poisson’s ratio. The orthogonal traction com-
ponents are

tN = E0eN tM = αE0eM tL = αE0eL (1)

This constitutive model results in local oscil-
lations of macroscopic stress [8].

Variant V: This model developed by
Cusatis, Rezakhani und Schauffert [12] features
elastic constants EV and ED with exact rela-
tions to E and v. The tractions read

tN = EDeN + (EV − ED) εV

tM = αEDeM tL = EDeL (2)

where volumetric strain εV is obtained as an av-
erage from contact simplices.

Variant H: The third model, developed in
Refs. [13, 14], follows the standard model from
Eq. (1) with α = 1. The parameter E0 is
then directly equal to E, such a model exhibits
no stress oscillations, and the Poisson’s ratio is

zero [9]. To achieve nonzero macroscopic Pois-
son’s ratio, eigenstrain at each element modi-
fying its tractions is computed from the esti-
mated macroscopic stress tensors at the element
nodes. Through iterative loops, global balance
is found. The macroscopic values E and ν are
the user-defined parameters of this model.

Variants V and H yield elastically homoge-
neous models with the same macroscopic prop-
erties but differ in the input elastic parameters.

2.2 Periodic RVE model geometry

The model is constructed with periodic ge-
ometry in a cube of size lRVE called the Repre-
sentative Volume Element (RVE). Spheres, with
sizes ranging from 4 to 10 mm in diameter ac-
cording to the Fuller curve, are randomly placed
ensuring no overlap, afterwards, the periodic
power tesselation is performed.

Periodic boundary conditions are applied to-
gether with a macroscopic strain tensor ε, con-
trolling displacements between primary and de-
pendent nodes, with one primary node’s dis-
placement fixed to prevent rigid-body transla-
tions.

100 periodic models of size lRVE = 100 mm
with differing internal geometry with 19900 el-
ements and 3400 nodes on average were used
for nodal stress field analysis. An example of
the model is shown in Fig. 1, contact facets are
visible on the left-hand side, and on the right-
hand side the lattice elements which are col-
ored by σxx stress tensor component under pure
shear load are shown.

All simulations are conducted using the
open-source software OAS available at
https://gitlab.com/kelidas/OAS,
employing a modified Newton-Raphson iter-
ation solver in steady state.
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Figure 1: Contact facets and discrete elements in an RVE
of size lRVE = 100mm. The elements are colored by the
nodal stress component σxx.

3 CONTROLLED HETEROGENEITY
In the following simulations, the standard (S)

material is used with parameter values E0 =
40 GPa and α = 0.24 typical for ordinary
concrete. The effective macroscopic values
Eeff, νeff are found for each RVE by applying
strain load in six linearly independent directions
and numerical fitting of theoretical isotropic
stiffness tensor.

The volumetric-deviatoric split material (V)
uses the effective values from the S ma-
terial ED = Eeff/ (1 + νeff) and EV =
Eeff/ (1− 2νeff). To introduce heterogeneity,
these values were randomized by randomly
drawing ED from a uniform distribution with
bounds (1 − η)µD and (1 + η)µD where µD is
the mean value. Such material variant is de-
noted V-RD. Because of local parallel and se-
rial connections of elements, µD is computed
for each RVE separately so that its effective pa-
rameters match those of the standard material.

The H material uses parameters E = Eeff,
ν = νeff. They were randomized by three dif-
ferent approaches. Variant H-R draws E and
ν for each element independently from uniform
distributions with mean values µE and µν and
width parameters ηE and ην . The mean val-
ues are calculated analogically to those in V-RD
variant.

Variant H-RD randomizes only the devia-
toric component of the material stiffness, ED,
keeping the volumetric part constant. For each
element, E and ν values are calculated from ED

value randomly drawn from a uniform distribu-
tion with µD and ηD parameters.

Lastly, the H-RF variant generates E and ν
independently but spatially correlated as real-
izations of random fields with uniform marginal
distributions defined by widths η and mean val-
ues µ. Random fields are generated via the
Karhunen–Loève expansion [15, 16, 17]. Peri-
odic metric ensures periodicity of the generated
Gaussian random fields, which are transformed
to non-Gaussian space using an approximation
of Nataf transformation from Ref. [18]. Corre-
lation length ℓc is a user-defined parameter of
the Gaussian autocorrelation function.

4 STRESS FIELDS COMPARISON
The RVEs with different elastic constitutive

model variants are subjected to macroscopic
strain loading. Tensorial stresses are calcu-
lated for each rigid body node. Thanks to the
model’s perfect periodicity, stress field ergod-
icity is ensured, meaning statistical sampling
across space and RVE realizations is equiv-
alent. A statistical assessment of the stress
fields is presented for different loading scenar-
ios. To compare the stress fields of the dif-
ferent materials, the ∆hist value is introduced.
It measures the distance of two histograms of
nodal stress components as Euclidian distance

∆hist = ±
√∑n

i=1 [h1(i)− h2(i)]
2 where h1(i)

and h2(i) is the frequency of the ith bin in
the first and the second histogram, respectively,
and n is the number of bins, which is identi-
cal (n = 30) in all histograms. The sign indi-
cates which distribution is wider and which is
narrower. A negative sign means the peak of
the first material is larger and vice versa.

4.1 Loading Scenarios
In the Load 1 scenario the RVEs are loaded

with purely volumetric macroscopic strain ten-
sor where εij = εV δij , with δij being the Kro-
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necker delta and εV = 1.5×10−5 being a scalar
representing volumetric strain.

The Load 2 and Load 3 scenarios are vari-
ants of purely deviatoric loads. The nonzero
values of the macroscopic strain tensor
{εxx, εyy, εzz, εyz, εxz, εxy} are εyz = εxz =
εxy = 1.5 × 10−5 for Load 2 and εxy =
2.6×10−5 for Load 3. Both loads have the same
value of equivalent strain εeq computed analog-
ically to the Von Mises stress value.

Lastly, Load 4 is the linear combination of
Load 1 and Load 3, having the same εV and εeq

respectively.

4.2 Load 1 results
The mean values of the stress components

under the purely volumetric loading are con-
stant between the nonrandomized models (S, H,
V) and the variant with only deviatoric stiff-
ness randomization (H-RD, V-RD). The stan-
dard variation of the components is close to zero
for all these variants, slight differences caused
by the iterative calculation are seen for H-RD
and V-RD materials. However, in the H-R vari-
ant, the stress is not constant and oscillates in
space with the mean values converging to those
of the other materials with the number of sam-
ples.

4.3 Load 2 and Load 3 results
Under the purely deviatoric loading, only the

H and V variants produce homogenous stress
fields. The other variants exhibit stress oscilla-
tions, which were studied in the original refer-
ence system xyz and rotated reference system
123 corresponding to the principal directions of
the macroscopic strain tensors. The uniform
distribution width parameters of the H-R ma-
terial variant ηE = ηD, which would produce
stress oscillations similar to those in the S vari-
ant, therefore having ∆hist value between S and
H-R variants minimal for all stress tensor com-
ponents, were sought after.

The ηE = ην = 0.7 parameters were found
to produce fields with low ∆hist in all coax-
ial stress directions under Load 2. However,
when the same stress fields were inspected in

the principal directions, the ∆hist changed sig-
nificantly, and no ηE, ην could minimize all
∆hist simultaneously. Histograms of σyz and
σ23 are shown in Fig. 2. From the σyz compo-
nent its mean value is subtracted for better com-
parison. The variation in the H-R histograms
based on the chosen reference system is due to
the relationships between the stress tensor com-
ponents. Pearson correlation matrices show that
while in S material the correlations are negligi-
ble (< | ∼ ±0.1|), in the H-R material they are
significant (≈ 0.3 ∼ 0.6).
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Figure 2: Histograms of σyz and σ23 stress components
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Figure 3: Histogram distance ∆hist between S and H-R
material variants for different ηE . ην = 0.7 is constant.

For the Load 3, which represents a differ-
ent deviatoric load type, no ηE, ην values were
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found that would minimize the ∆hist in either
reference system. This is demonstrated in Fig.
3, which shows the ∆hist values for different ηE
during Load 3. The ην has no significant ef-
fect on the stress oscillations. The ∆hist for both
Load 2 and Load 3 and both reference systems
for ηE = ην = 0.7 can be seen in Tables 1 and
2.

The H-RD and V-RD variants show similar
stress oscillation characteristics, succeeding in
minimizing ∆hist only in the specific case of
Load 2 and coaxial stress directions.

The H-RF material was compared to the S
material in terms of variograms. The ηE =
ην = 0.7 values were used for the marginal
uniform distributions. The variogram of σxx is
shown in Fig. 4. It can be seen that the H-R
and V-RD variants show similar spatial depen-
dency to the S material. The H-RF martial ex-
hibits significantly lower variances decreasing
with a higher correlation length ℓc.
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Figure 4: Variogram of σxx under Load 2

Table 1: Coaxial stress components ∆hist values between
H-R and S variant under Load 2 and Load 3

Load σxx σyy σzz σyz σxz σxy

2 2.1 2.1 2.1 1.4 1.3 1.4
3 1.9 1.7 −3.1 12.7 12.9 4.9

Table 2: Principal stress components ∆hist values be-
tween H-R and S variant under Load 2 and Load 3

Load σ11 σ22 σ33 σ23 σ13 σ12

2 1.8 1.7 −3.0 14.2 14.5 5.3
3 −3.3 −3.6 18.1 9.8 9.1 18.2

4.4 Load 4 results
In the case of Load 4, which is a combina-

tion of Load 1 and Load 3, the material’s lin-
ear elasticity ensures that the results are sim-
ply the sum of the results from the individual
component loads. The H-RD and V-RD mate-
rials therefore produce the same oscillations as
in the case of Load 3. This also shows that the
H-R material cannot replicate the standard ma-
terial for varying loading types, as the volumet-
ric component differently affects the resulting
oscillations.

Due to the difference in the stress homoge-
nization procedure of V and H material, when
using the same randomization characterized by
the ηD value for the H-RD and V-RD variants,
the former produces oscillations with larger
variability. Also, the ratio of the variability be-
tween the stress components is slightly differ-
ent.

5 CONCLUSIONS
By applying a stress homogenization meth-

ods a uniform local response of a discrete
model with non-physical discretization is ob-
tained. The volumetric-deviatoric decomposi-
tion of the constitutive model and the auxiliary
stress projection method were implemented to
obtain elastically homogeneous discrete mod-
els. Through spatial randomization of the elas-
tic material parameters, the stress response
can be heterogenized in a controlled manner.
Different approaches to the randomization of
their elastic parameters were introduced and
the characteristics of the resulting stress oscil-
lations were compared.

Significant challenges were found in repli-
cating the stress field characteristics of the stan-
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dard material. Under pure volumetric loading,
both standard and homogenized materials pro-
duce homogeneous stress fields, the same ap-
plies when only the deviatoric part of the homo-
geneous constitutive model is randomized. Ex-
pectedly, when the volumetric part is also ran-
domized, stress oscillations occur.

When a deviatoric component of the loading
is present, both the standard and the randomized
materials produce stress oscillations. However,
no single randomization approach for homoge-
nized materials successfully reproduces the sta-
tistical characteristics of stress fields observed
in standard materials across all loading sce-
narios. Matching stress distributions depends
heavily on the applied load, requiring repeated
recalibration for different strain tensors. Fur-
thermore, the standard material exhibits statis-
tically independent stress components that ran-
domized models fail to replicate, showing sig-
nificant cross-correlation, which causes differ-
ent transformations of stress components under
reference system rotations. This makes exact
replication of the standard material’s oscillation
impossible in most loading scenarios.

Spatial correlations in stress fields are best
approximated by independently randomizing
elastic parameters at discrete contacts, whereas
introducing spatial dependence through spatial
random fields with correlation lengths larger
than particle size results in excessive stress spa-
tial correlation compared to standard material.
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