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Abstract. This study investigates the mathematical algorithm for mapping the continuous random
fields of material properties onto the FE meshes, and its implications for the mesh sensitivity in
stochastic FE analysis of quasibrittle fracture. We adopt a continuum damage constitutive model, and
develop a mechanistic mapping method. The projection of the random fields of material properties
onto the FE mesh is governed by the prevailing damage pattern of the finite element. The model is
applied to stochastic FE analysis of notched and unnotched flexural specimens under different loading
configurations. The numerical analysis also considers different correlation lengths of the random
fields of material properties. The simulation shows that, even with the proper energy regularization
scheme, the commonly used local mapping and local average methods could yield considerable mesh
dependence of the peak load statistics. By relating the mapping algorithm to the underlying damage
pattern, the present model is able to mitigate the mesh sensitivity for different specimen geometries,
loading configurations, and correlation lengths.

1 INTRODUCTION

Due to the inherent uncertainties in applied
loads and structural resistance, reliability anal-
ysis is crucial in the design of various engineer-
ing structures. In the past two decades, signifi-
cant attention has been given to structures made
of quasibrittle materials, such as concrete, ce-
ramics, fiber composites, rock, and cold asphalt.
Although several analytical models have been
developed to understand the failure statistics of
quasibrittle structures [1–3], the stochastic fi-
nite element method (SFEM) remains the most
versatile approach for evaluating the probability
distribution of load resistance.

The Monte Carlo simulation (MCS) is ar-
guably the most widely used approach for
SFEM. Generally, MCS involves two steps: 1)
the mathematical representation of spatially dis-
tributed random material properties and 2) the
numerical simulation of nonlinear structural re-
sponse. The spatial randomness of the material
properties is conveniently described by homo-
geneous random fields. To complete the MCS
scheme, the continuous random field of mate-
rial properties needs to be mapped onto the FE
mesh. In SFEM, two methods have been widely
used: 1) direct local projection [4], where the
value of the random constitutive parameter of
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the finite element is taken directly from the un-
derlying field at the element’s centroid, and 2)
local averaging, where the random constitutive
parameter of the finite element is determined by
averaging the corresponding random field over
the element’s domain [4–6]. However, from a
physical perspective, these methods are ques-
tionable for the strength and fracture proper-
ties of quasibrittle materials. If the size of the
localized damage zone is smaller than the el-
ement, the overall tensile strength of the finite
element would be governed by the minimum
tensile strength of all potential damage zones
within the element, which cannot be adequately
described by either direct local projection or lo-
cal averaging methods. For quasibrittle mate-
rials, the mapping method of random fields of
material properties and the resulting probability
distributions of constitutive properties of the fi-
nite element are strongly influenced by the dam-
age pattern.

It has been well known that quasibrittle
materials exhibit a strain-localization behavior,
which has profound implications for finite ele-
ment simulations. Over the years, various regu-
larization methods have been developed to pre-
vent spurious mesh dependence in determinis-
tic FE analysis [3, 7, 8]. Recent studies have
found that, for SFEM, energy regularization of
the constitutive relationship alone is insufficient
to mitigate the spurious mesh dependence in the
predicted statistics of structural response [9,10].
Although these studies highlight the critical im-
portance of relating the cumulative distribution
functions (cdfs) of constitutive properties to the
damage pattern, they neglect the spatial corre-
lation of random material properties by impos-
ing restrictions on the FE mesh size relative to
the correlation length and fracture process zone
(FPZ) width. These restrictions may not be ap-
plicable in all scenarios. Based on these find-
ings, it has become clear that the mapping al-
gorithm of random fields of material properties
needs to be devised according to the damage
pattern of the finite element. This study focuses
on developing such a mechanism-based map-
ping method and examining its performance in

stochastic FE simulations of quasibrittle frac-
ture.

2 CONSTITUTIVE MODEL
This study adopts a recently developed

isotropic damage model with a general energy
regularization scheme for tension-dominant
failure [8, 10]. The stress-strain relationship is
written as σ = f(ω)C : ϵ, where C is the elas-
tic stiffness tensor, ω is a scalar damage variable
increasing from 0 (virgin state) to 1 (fully dam-
aged state), ϵ is the infinitesimal strain tensor,
and f(ω) is a damage function which decreases
monotonically from 1 to 0 as ω increases. We
postulate a free energy function Y (ω, ϵ), where
the energy release (per unit thickness) of the
finite element due to an increment amount of
damage δω is equal to AeδY , Ae = area of fi-
nite element. Consider a quadrilateral element,
let h1 be the width passing through the centroid
in the direction of a principal vector n⃗e, de-
fined as the maximum principal strain direction
at damage onset (Fig. 1a). We define element
size h2 in the orthogonal direction such that
Ae = h1h2. The balance between the energy re-
leased by damage and the energy expended for
crack propagation can be written as

∂Y

∂ω
+

nbG̃f

h1

= 0 (1)

where Y = 1
2
f(ω)Ẽϵ̄2, G̃f = average value

of fracture energies of nb FPZs, Ẽ is the av-
erage Young modulus of the element, and ϵ̄ =√∑3

i=1⟨ϵi⟩2 (ϵi = principal strains, ⟨·⟩ =

Macaulay bracket) [11]. It has been suggested
that the localization level of each finite element
can be quantified based on the local damage
patterns of the two adjacent elements aligned
most closely with principal vector n⃗e [9]. For
element i, the following localization parameter
was recently proposed [10]:

χ1 =

〈
1− ω̂m + ω̂n

2ω̂i

〉1/2

(2)

where ω̂k (k = i,m, n) denotes the representa-
tive damage level of element k. The represen-
tative damage level of element k is determined
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as a weighted average of the damage values of
the element itself and the two adjacent elements
that are aligned closest to the direction of the
principal vector of the element. For each finite
element, the number of active FPZs is related to
its localization parameter by

nb = 1 +

(
h1

h0

− 1

){
1−

[
⟨χ1 − χt1⟩
χm − χt1

]κ}
(3)

where h0 is the FPZ width (a material char-
acteristic length), and κ and χt1 are constants.
χt1 determines the threshold value of χ1 be-
low which the element is deemed to experience
a fully diffused damage pattern. κ describes
the transitional behavior between the fully dif-
fused damage case and the fully localized dam-
age case in terms of χ1. The constitutive model
is completed by prescribing the form of dam-
age function f(ω). In this study we use an
f(ω) function which yields an exponential soft-
ening behavior under uniaxial tension [12]. The
damage function is characterized by the tensile
strength f̃t and Young modulus Ẽ of the finite
element.
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Fig. 4

a) b)

Figure 1: a) Definition of mesh size of a quadrilateral fi-
nite element, and b) a finite element laying over a random
field of material property.

3 MODELING OF RANDOM CONSTI-
TUTIVE PROPERTIES

Due to the heterogenous nature of quasibrit-
tle materials, the material-point properties are
expected to exhibit a considerable degree of
spatial variability, which can mathematically be
described by random fields. Here we consider
these random fields to be homogenous and sta-
tistically independent. For material property H ,

the corresponding random field H(x) can be
generated by using the power spectral density
method [13, 14] if it is Gaussian. If H(x) is
non-Gaussian, we first generate a Gaussian ran-
dom field and then transform it to the target non-
Gaussian field [15].

Consider a finite element of size h1×h2 that
lays over a random field H(x), which is gen-
erated using a grid of size ∆x aligned with the
specimen’s global coordinate system (Fig. 1b).
The random values of H of all grids covered
by the finite element are stored in a matrix h
of size p × q using bilinear interpolation of the
underlying random field, where p, q = num-
bers of grids along h2 and h1 directions, respec-
tively. The Young modulus of the finite element
is taken as the average of the Young moduli of
all the grids inside the finite element. By con-
trast, the mappings of tensile strength f̃t and
fracture energy G̃f need to be tied to the dam-
age pattern. Here we distinguish two scenarios
of localized damage: Case 1) a localized dam-
age band initiates inside the element, and Case
2) the localized damage forms inside the ele-
ment due to the propagation of localized dam-
age from an adjacent element. To differentiate
these two cases, for finite element i, we propose
the following parameter

χ2 = maxj [χ1j (1− |n⃗e · v⃗ij|)] (4)

where v⃗ij is a unit vector in the direction from
the centroid of element i to that of its adjacent
element j, and χ1j is the value of χ1 of element
j.

For case I (χ2 ≤ χt2), the apparent tensile
strength is equal to the minimum average ten-
sile strength of all the potential damage bands
in the element. The average tensile strength of
a potential damage band is calculated by aver-
aging the random tensile strengths of the grids
that are covered by the damage band. Once the
damage band with the minimum average ten-
sile strength is identified, the apparent fracture
energy of the finite element is thus the average
fracture energy of that particular damage band.

For case II (χ2 > χt2), the damage band in
the current element is formed as a result of the
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propagation of the localized damage band from
the adjacent element. Consider the adjacent el-
ement j has a localized damage, where the cen-
troid of this damage band is denoted by x⃗bj . The
centroid of the damage band in the current ele-
ment i is located at the intersection between the
line emanating from the centroid x⃗bj in the di-
rection of the principal vector n⃗j

e of element j
and the centerline of the current element in the
direction of its principal vector (Fig. 2). Once
the location of the damage band is determined,
the apparent tensile strength and fracture energy
of the current element are computed as an aver-
age over this particular damage band.

ℎ$!

#%!

#%"

ℎ$"
Fig. 6

Element i

Element j

Figure 2: Identification of the location of a propagating
localized damage band.

4 NUMERICAL STUDIES
The present model is applied to simulate

the failure behavior of three-point and four-
point bend specimens made of dense alu-
mina ceramic. The specimens are loaded in
a displacement-controlled mode, and a suffi-
ciently large number of realizations (approx-
imately 400) are used to ensure convergence
of the second order statistics of peak load. In
this study, we consider that E and Gf follow a
Gaussian distribution, and ft follows the Gauss-
Weibull distribution. The spatial variations of
E, Gf , and ft are characterized by squared
exponential covariance functions [16]. In the
analysis, we consider three different correlation
lengths: la = h0/4, h0/2, and h0.

The stochastic simulations are conducted in

the open-source FEM software OOFEM with
a Matlab interface for performing the mapping
algorithm. To investigate the mesh insensitiv-
ity, three different element widths (h0, 2h0, and
4h0) are used in the simulation. As a compara-
tive study on mesh sensitivity, we consider three
mapping methods: 1) the present method, 2)
local mapping method, and 3) local averaging
method. When comparing the proposed map-
ping method to the local mapping and local av-
eraging methods, the same mechanism-based
energy regularization described by Sec. 2 is
used for all simulation cases.

5 RESULTS AND DISCUSSION
For all tested CLs, the mean peak loads P̄m

of the four-point bend beams predicted with the
three mapping methods are nearly insensitive to
the mesh size (Fig. 3). This is due to the present
energy regularization scheme, which is applied
to all three mapping methods. In Fig. 4a, it
is seen that the standard deviation of peak load
δP predicted by the local mapping method in-
creases with the mesh size. This result can be
explained from the damage pattern. Upon load-
ing, a damage zone of a considerable size is first
formed. At the peak load, a localized damage
band (i.e. macrocrack) forms and initiates from
a random location inside this damage zone. As
the mesh size increases, there are a fewer num-
ber of elements in the damage zone. Since the
local mapping method uses the fixed cdfs of ap-
parent tensile strength and fracture energy, a de-
crease in the number of elements in the damage
zone leads to an increasing variability in energy
dissipation.

Fig. 4a also shows that, as the CL increases,
the mesh dependence gets less pronounced. For
a larger CL value, each finite element exhibits
less spatial randomness of material property.
Thus, the statistics of constitutive properties be-
come less dependent on the element size. Such
a behavior is a general trend, which is also seen
in the simulations of beams of other geometries
for all three mapping methods. In Fig. 4b, it
is seen that the local average method yields a
less mesh-dependent δP . This is because, the
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local average method gives the correct mapping
during the early loading stage since the beam
experiences a diffused damage pattern. Nev-
ertheless, even though the result of local aver-
age method does not exhibit strong mesh de-
pendence, the method does not correspond to
the correct damage pattern. Fig. 4c presents
the results of the present method. It is seen that
the method yields a relatively mesh-insensitive
standard deviation of peak load across all tested
CL values.

Fig. 14
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Figure 3: Mean peak loads of unnotched four-point bend
beam simulated using different mesh sizes and different
CLs.

For all three mapping methods, the simu-
lated mean peak loads of the notched three-
point bend beams are mesh insensitive (Fig.
5). In contrast to the case of unnotched three-
point bend beams, Fig. 6a shows that the simu-
lated δP of notched beam using the local map-
ping method does not exhibit strong mesh de-
pendence. As loading proceeds, fully localized
damage propagates upwards from the notch tip.
At peak load, several elements along the liga-
ment are damaged. Due to damage propagation,
the locations of the damage bands inside these
elements are deterministic. The apparent tensile
strength f̃t and fracture energy G̃f are equal to
the average tensile strength and fracture energy
of one damage band. Consequently, the statis-
tics of f̃t and G̃f are independent of the element

size.

Fig. 15
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Figure 4: Standard deviations of the peak load of un-
notched four-point bend beam simulated using (a) local
mapping method, (b) local averaging method, and (c)
present method.
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Fig. 11. Mean peak loads of notched three-point bend beam simulated using different mesh sizes and different CLs.

Fig. 12. Standard deviations of the peak load of notched three-point bend beam simulated using (a) local mapping method, (b) local averaging method, and
(c) present method.

Fig. 9c presents the results of the present method. It is seen that the method yields a relatively mesh-insensitive standard deviation
of peak load across all tested CL values. When the element size equals to h0, the present model is essentially the same as the local
averaging method. As the element size increases, the present model shows a lesser degree of mesh dependence as compared to the
local averaging method. It is seen that the present model predicts a higher value of �P than the local averaging method does. This
is because, as mentioned before, the local averaging method underestimates the variability of apparent tensile strength at initiation
of localized damage.

Notched three-point bend beam
Fig. 11 shows that, for all three methods, the simulated mean peak loads of the notched three-point bend beams are mesh

insensitive. Due to stress concentration at the notch tip, localization occurs right after damage initiates, and therefore the energy
regularization scheme essentially reduces to the crack band model (Ba∫ant and Oh, 1983). The total energy dissipation for damage
of the element is equal to the energy expended to propagate a single crack throughout the element. Such a localization behavior
also dictates that the spatial randomness of material properties has no effects on the damage pattern. Therefore, the mean peak load
is independent of the CL.

Fig. 12a presents the standard deviations of the peak load for different mesh sizes calculated by the local mapping method.
In contrary to the case of unnotched three-point bend beams, the simulated �P of notched beam does not exhibit strong mesh
dependence. Upon loading, the first element at the notch tip would experience a localized damage, whose location is determined
by the notch tip. As the loading proceeds, the localized damage propagates upwards. At the peak load, several elements along the
ligament are damaged. The important point here is that, due to damage propagation, the locations of the damage bands inside these
elements are deterministic. The apparent tensile strength õft and fracture energy õGf of the finite element are equal to the average
tensile strength and fracture energy of one damage band. Consequently, the statistics of õft and õGf are independent of the element
size. Since the local mapping method does not calculate the average tensile strength and fracture energy of the band, it over-predicts
the standard deviation of the peak load. Nevertheless, the model uses mesh-independent statistics of õft and õGf , and therefore it is
able to give a mesh-insensitive result regardless of the CL.

By contrast, the standard deviation �P calculated by the local averaging method exhibits a strong mesh dependence (Fig. 12b). For
all three CLs, the calculated �P decreases significantly with an increasing mesh size. As mentioned earlier, the local averaging method
predicts that the statistical variations of õft and õGf decrease as the mesh size increases. However, the localized damage pattern of
the notched beam dictates that the statistics of õft and õGf should not be mesh dependent. This explains the mesh dependence of �P
simulated by the local averaging method. By comparing the results for different CLs, it is seen that, when the element size increases
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Fig. 11. Mean peak loads of notched three-point bend beam simulated using different mesh sizes and different CLs.

Fig. 12. Standard deviations of the peak load of notched three-point bend beam simulated using (a) local mapping method, (b) local averaging method, and
(c) present method.

Fig. 9c presents the results of the present method. It is seen that the method yields a relatively mesh-insensitive standard deviation
of peak load across all tested CL values. When the element size equals to h0, the present model is essentially the same as the local
averaging method. As the element size increases, the present model shows a lesser degree of mesh dependence as compared to the
local averaging method. It is seen that the present model predicts a higher value of �P than the local averaging method does. This
is because, as mentioned before, the local averaging method underestimates the variability of apparent tensile strength at initiation
of localized damage.

Notched three-point bend beam
Fig. 11 shows that, for all three methods, the simulated mean peak loads of the notched three-point bend beams are mesh

insensitive. Due to stress concentration at the notch tip, localization occurs right after damage initiates, and therefore the energy
regularization scheme essentially reduces to the crack band model (Ba∫ant and Oh, 1983). The total energy dissipation for damage
of the element is equal to the energy expended to propagate a single crack throughout the element. Such a localization behavior
also dictates that the spatial randomness of material properties has no effects on the damage pattern. Therefore, the mean peak load
is independent of the CL.

Fig. 12a presents the standard deviations of the peak load for different mesh sizes calculated by the local mapping method.
In contrary to the case of unnotched three-point bend beams, the simulated �P of notched beam does not exhibit strong mesh
dependence. Upon loading, the first element at the notch tip would experience a localized damage, whose location is determined
by the notch tip. As the loading proceeds, the localized damage propagates upwards. At the peak load, several elements along the
ligament are damaged. The important point here is that, due to damage propagation, the locations of the damage bands inside these
elements are deterministic. The apparent tensile strength õft and fracture energy õGf of the finite element are equal to the average
tensile strength and fracture energy of one damage band. Consequently, the statistics of õft and õGf are independent of the element
size. Since the local mapping method does not calculate the average tensile strength and fracture energy of the band, it over-predicts
the standard deviation of the peak load. Nevertheless, the model uses mesh-independent statistics of õft and õGf , and therefore it is
able to give a mesh-insensitive result regardless of the CL.

By contrast, the standard deviation �P calculated by the local averaging method exhibits a strong mesh dependence (Fig. 12b). For
all three CLs, the calculated �P decreases significantly with an increasing mesh size. As mentioned earlier, the local averaging method
predicts that the statistical variations of õft and õGf decrease as the mesh size increases. However, the localized damage pattern of
the notched beam dictates that the statistics of õft and õGf should not be mesh dependent. This explains the mesh dependence of �P
simulated by the local averaging method. By comparing the results for different CLs, it is seen that, when the element size increases

Figure 5: Mean peak loads of notched three-point bend
beam simulated using different mesh sizes and different
CLs.

By contrast, the standard deviation δP cal-
culated by the local average method exhibits a
strong mesh dependence (Fig. 6b). As men-
tioned earlier, the local average method predicts
that the statistical variation of f̃t and G̃f de-
creases as the mesh size increases. However,
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the localized damage pattern of the notched
beam dictates that the statistics of f̃t and G̃f

should not be mesh dependent. As shown in
Fig. 6c, the present method yields a nearly
mesh-insensitive result for δP . In the simula-
tion, parameter χ2 of the elements along the lig-
ament takes its maximum value as soon as dam-
age occurs in the first element above the notch
tip.

Fig. 12

a) b) c)

Fig. 12
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Figure 6: Standard deviations of the peak load of notched
three-point bend beam simulated using (a) local map-
ping method, (b) local averaging method, and (c) present
method.

6 CONCLUSIONS
Quasibrittle structures typically display

complex damage patterns and failure behav-
iors, leading to intricate mesh dependence in
stochastic FE simulations. It has been shown
that the energy regularization scheme is inad-
equate for addressing the mesh dependence of
second-order failure statistics. Mesh sensitiv-
ity diminishes when the correlation length of
the random fields of material properties is large
compared to the FE mesh size.

The core issue is how to project the con-
tinuous random fields of material properties
onto the FE mesh. This study develops a
mechanism-based mapping method that up-
dates the mapping algorithm according to the
evolving damage pattern during the loading
process. A key implication is that the resulting

statistics of the constitutive properties of the fi-
nite element can vary with mesh size, governed
by the damage pattern.

Numerical studies indicate that local map-
ping and local average methods are insufficient
for reducing mesh dependence of the failure
load statistics. In contrast, the present model
offers a robust solution for mitigating mesh de-
pendence across various structural geometries
with different failure mechanisms. The effec-
tiveness of this model relies on the connection
between the damage pattern and the mapping of
the random fields of material properties.
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