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Abstract: The crack behavior of concrete needs to be understood to properly evaluate the damage in 

concrete specimens from in-service structures.  The mechanical properties of heavily damaged 

concrete are unreliable due to variations in destructive behavior and damage localization.  Therefore, 

a supplemental indicator is necessary for evaluating the damage in concrete with crack propagation 

behavior.  Against this background, the damage behavior of concrete with cracks of different 

orientations is investigated using Acoustic Emission (AE) in uniaxial compression test.  Concrete 

specimens were drilled from a dismantled weir pillar of a reinforced concrete (RC) structure.  These 

concrete specimens were affected by freeze-thaw and salt damage due to the severe environmental 

conditions.  Each concrete specimen has a crack distribution with vertical and horizontal orientations 

defined as the longitudinal and short directions of the concrete.  In the experimental procedures, X-

ray Computed Tomography (CT), ultrasonic testing and uniaxial compression test with AE 

monitoring were performed.  Based on the results of non-destructive testing, selected concrete 

specimens were subjected to uniaxial compression test.  Pre-existing cracks were visualized and 

quantified based on their distribution and geometric features using X-ray CT.  The geometric 

properties of the cracks were calculated in two dimensions and included parameters such as perimeter, 

angle, and circularity.  The number of AE events was estimated using machine learning based on the 

relationship between the geometric properties of neighboring elements.  The influence of these 

geometric properties on the number of AE events was investigated quantitatively.

1. INTRODUCTION 

The damage assessment of in-service 

concrete structures is generally performed 

based on the extraction of concrete specimens 

and uniaxial compression test [1].  For concrete 

with significant damage, it is believed that 

developing cracks lead to abnormal 

deformation behavior during the loading 

process and localized failure.  Most studies 

have focused on Acoustic Emission (AE) 

generated during compressive failure to 

estimate quantitative indices of pre-existing 

cracks [2, 3].  The detected AE signals are 

influenced by the interactions among the 

components of the concrete, however, it is 

difficult to fully reveal these detailed 

relationships.  Previous studies have 

experimentally investigated the relationships 

between AE and each element, such as 

aggregate size [4], crack angle [5], crack size 

and quantity [6] and void distribution [7].  

Considering these interactions between 

neighboring elements of the concrete specimen 
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is essential for AE characteristic evaluation. 

Concrete specimens extracted from existing 

structures often contain diverse distributions 

and geometric characteristics of cracks.  The 

internal structure of concrete can be visualized 

and quantified using X-ray CT methods.  For 

concrete specimens drilled from in-service 

structures, distinctive crack angles and 

distributions were observed, and the AE release 

characteristics could not be sufficiently 

correlated with the quantitative parameters of 

cracks. 

To address this issue, this study aims to 

clarify the relationship between the distribution 

and geometric characteristics of cracks and the 

number of AE events using machine learning 

based on graph theory.  The relationships 

between the internal structure and the number 

of AE events are expressed using graphs.  A 

graph is composed of nodes and links 

connecting the nodes [8].  Graph theory 

contributes to expressing the relationship 

between internal structure and AE behavior.  In 

addition, the attributes of elements and their 

combinations can be reflected in the nodes and 

links.  Graph representation allows for the 

extraction of features that include more 

complex interactions among components [9, 

10]. 

In this study, X-ray CT measurements and 

uniaxial compression test with AE 

measurements were conducted for concrete 

specimens with accumulated cracking damage.  

The crack distribution and attributes obtained 

from the X-ray CT measurements are stored in 

the nodes of the graph.  The AE localization and 

SiGMA analysis [11] results are expressed as 

link weights.  Regression analysis is performed 

using machine learning to predict link weights 

based on the geometric characteristics and 

distribution of cracks.  Based on the regression 

results, the influence of crack distribution and 

geometric characteristics on crack behavior 

during compressive loading of concrete is 

discussed. 

 

 

 

 

 

2 ANALYTICAL METHODS 

2.1 Graph representation and feature 

extraction of concrete internal structures 

The graph representation of the internal 

structure of concrete and AE event information 

is shown in Figure 1.  The graph representing 

the internal structure of the concrete consists of 

nodes categorized as coarse aggregates, cracks, 

or voids, each with numerical attributes such as 

 
Figure 1: Graph representation based on internal 

structure and AE event. 
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perimeter, circularity, and angle. Links are 

generated for nodes within a specified radius, 

and the number of AE events within a 10 mm 

radius is stored as the link weight.  Since the 

number of generated links depends on the 

radius, links are pre-generated for nodes within 

radius of 20 mm and 30 mm (shown in Figure 

2).  As not all links are generated between 

adjacent nodes at a radius of 20 mm, a radius of 

30 mm is defined for link generation.  In this 

study, geometric characteristics calculated from 

the nodes are extracted to estimate the link 

weights.  These features include statistical 

metrics (maximum, minimum, sum and 

absolute difference) of the geometric 

characteristics and distances between nodes. 

2.2 Regression of the number of AE event 

using Machine Learning of crack feature 

Regression models are developed to predict 

link weights (the number of AE events) using 

the features.  The machine learning models used 

are decision trees [12] and RuleFit [13], both of 

which are interpretable.  SHAP values are used 

to interpret the decision tree model [14].  A 

decision tree is a non-linear, non-parametric 

regression model that recursively partitions the 

 
Figure 3: Graph structure for each mode. 

 

 
Figure 2: The relationship between graph and radius 

defining link. 

 



Shibano K, Mukai M and Suzuki T 

 4 

input data, forming a structure that 

automatically captures interactions between 

explanatory and dependent variables.  It is 

advantageous due to its ease of interpretation 

and its ability to handle non-linear data and 

feature interactions.  SHAP values, based on 

game theory, quantify the contribution of each 

feature to the prediction outcome by averaging 

the marginal effects when features are added.  

RuleFit combines the interpretability of 

decision trees with the simplicity of linear 

models.  It extracts if-then rules from decision 

trees and incorporates them, along with the 

original features, into a linear regression model.  

L1 regularization is applied to remove less 

significant rules and features, resulting in a 

concise and interpretable model.  The data is 

split into training/validation (80%) and test 

(20%) sets, and prediction accuracy is 

compared using RMSE (Root Mean Square 

Error) on the test data. 

3 EXPERIMENTAL METHODS 

3.1 Specimens 

Experimental investigations were 

conducted on a reinforced concrete drainage 

sluice structure.  This facility has been in 

service since 1971, and numerous cracks 

caused by rebar corrosion are observed on the 

surface of the pier concrete (shown in Figure 4). 

Five concrete specimens with varying degrees 

of damage were evaluated using X-ray CT 

measurements before uniaxial compression test, 

including AE measurements.  The lengths of the 

specimens are as follows: Sample 1 is 152 mm, 

Sample 2 is 180 mm, Sample 3 is 190 mm, 

Sample 4 is 156 mm, and Sample 5 is 204 mm. 

The diameters of the specimens range from 

100.6 mm to 100.9 mm. 

3.2 X-ray Computed Tomography 

measurements 

The internal structures of the concrete 

specimens are visualized and geometric 

characteristics are calculated using CT images.  

The CT images were acquired using an 

Aquilion One (TOSHIBA) scanner.  The 

scanning parameters were set as follows: a 

helical pitch of 51.0, a slice thickness of 0.5 mm, 

a tube voltage of 120 kV, a tube current of 300 

mA and an image resolution of 512 × 512 pixels.  

The perimeter, circularity and angle of cracks 

are calculated.  Circularity ranges from 0 to 1, 

with values closer to 1 indicating a more 

circular shape.  Voids are identified as regions 

with a circularity higher than 0.5, while cracks 

are identified as regions with a circularity of 0.5 

or less.  The angle is defined as the angle 

between the major axis of an ellipse fitted to the 

object and the X-axis of the image.  Angles 

parallel to the loading direction are 90°, while 

perpendicular angles are 0° or 180°. 

3.3 Uniaxial compression test with Acoustic 

Emission measurements 

Uniaxial compression test was conducted 

according to JIS A 1108 (Testing Method for 

Compressive Strength of Concrete) [1].  AE 

measurement was introduced to evaluate crack 

behavior during the loading process.  Teflon 

sheets were inserted between the loading plates 

and the concrete specimens to eliminate noise 

caused by friction at the contact surfaces.  Two 

strain gauges were attached in the vertical and 

horizontal directions.  The AE measurement 

system used was SAMOS (Physical Acoustics 

Corporation).  Six resonant AE sensors (R15α) 

were installed.  The AE signals were amplified 

by 60 dB using a preamplifier and main 

amplifier.  The frequency range was set to 5–

400 kHz, the threshold level to 42 dB, the 

sampling rate to 1 MHz and the pre-trigger time 

to 256 µs, with a signal recording length of 

1,024 µs for each AE hit.  AE source 

localization and SiGMA analysis were 

 
Figure 4: Concrete specimens from in-service 

structure. 
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performed to quantitatively evaluate the 

formation modes of microcracks that behave as 

sources of AE waves [11].  Ultrasonic velocity 

tests were conducted before the uniaxial 

compression tests, and the velocities were used 

for AE source localization. 

4      RESULTS AND DISCUSSION 

4.1 Visualization of concrete internal 

structure by X-ray Computed Tomography 

The crack distribution of concrete 

specimens, as revealed by X-ray CT, is shown 

in Figure 5.  The upper and lower images 

display the CT images and the segmentation 

results of the center cross-section.  For Sample 

1, vertical cracks are observed on the right side. 

For Sample 2, horizontal cracks are confirmed 

at the center and lower part.  For Sample 3, 

cracks are observed to develop throughout the 

entire specimen, with a mix of vertical and 

horizontal cracks.  For Sample 4, vertical cracks 

are found at the upper part, and horizontal 

cracks are present at the center.  For Sample 5, 

horizontal cracks are present throughout most 

of the area. 

4.2 Mechanical properties and AE source 

localization 

The mechanical properties of the concrete 

specimens are shown in Table 1.  The minimum 

strain is 737×10⁻⁶ (Sample 4), and the 

maximum is 2,309×10⁻⁶ (Sample 2). The 

minimum compressive strength is 5.8 N/mm² 

(Sample 4), and the maximum is 18.3 N/mm² 

(Sample 1).  Sample 4, with the lowest strain 

energy, exhibited cracks distributed in the 

longitudinal direction.  The relationship 

between strain energy levels and the number of 

AE events by mode is shown in Figure 6.  For 

all samples, a large number of AE events are 

observed at strain energy levels of 0-20%.  The 

reason for the lack of AE events after the initial 

loading is that crack propagation during the 

loading process led to a decrease in elastic wave 

velocity, which in turn reduced the positioning 

 
Figure 5: Crack distribution of concrete specimens. 

 

 

Sample 1 Sample 2 Sample 3 Sample 5Sample 4

Legend Mortar Coarse aggregate Void Crack

Sample 1 Sample 2 Sample 3 Sample 5Sample 4

Crack



Shibano K, Mukai M and Suzuki T 

 6 

accuracy.  At strain energy levels of 0-20%, 

Sample 1 and Sample 4, where vertical cracks 

predominated, have the highest tensile mode 

AE event rates, while the shear mode AE event 

rates are the lowest for these two samples.  In 

Sample 5, where horizontal cracks 

predominated, the shear mode AE event rate is 

the highest. 

4.3 Regression for the number of AE event 

using Decision Trees and RuleFit 

The regression results from the decision 

tree and RuleFit models are shown in Table 2.  

A comparison of the algorithms reveals that 

RuleFit consistently outperforms the decision 

tree in terms of regression accuracy for all 

modes.  RuleFit extracts new rules from 

decision trees and automatically accounts for 

interactions among multiple variables.  In 

contrast, decision trees require interactions to 

be explicitly input as variables.  It is concerning 

that interaction terms significantly increase the 

number of variables, potentially reducing 

estimation efficiency in a counterproductive 

manner.  Therefore, interaction terms are not 

used in the decision tree model for this study.  

The regression accuracy is low, indicating the 

need for higher accuracy through feature design 

that considers additional node and link 

attributes, as well as more complex models.  For 

shear mode, regression accuracy is the lowest 

among the modes.  In Figure 3, the AE event 

location and density for mixed mode and tensile 

mode are similar for Samples 1, 3, 4, and 5, 

whereas the AE event location and density for 

shear mode are distinct.  This suggests that 

estimating the number of AE events for shear 

mode is more difficult than for the other modes. 

4.4  Interpretation of Decision Tree using 

SHAP values 

Figure 7 illustrates the variables 

contributing to regression as interpreted by 

SHAP values.  The horizontal axis represents 

the SHAP values, indicating the impact on 

predictions, while the variables are listed on the 

left in descending order of the average absolute 

SHAP values.  The color bar indicates the 

magnitude of each variable.  The top three most 

important variables for each mode are: for 

mixed mode, maximum perimeter, minimum 

circularity, and absolute difference in angle; for 

tensile mode, minimum circularity, maximum 

perimeter, and total circularity; and for shear 

mode, minimum circularity, maximum 

perimeter and distance. 

The maximum perimeter and minimum 

circularity are common among all modes.  The 

 
Figure 6: The relationship between strain energy 

levels and the number of AE events by mode. 

Table 2: The regression results from the decision 

tree and RuleFit models 

RMSE 
Model 

Mixed Tensile Shear 

Decision Tree 1.515 1.751 2.645 

RuleFit 1.116 0.916 2.003 

 

Table 1: Mechanical properties of concrete specimens 

Sample 

Maximum strain 

εmax  

(×10-6) 

Compressive 

strength 

σmax 

Initial tangent 

modulus 

E0 

Secant 

modulus 

Ec 

Strain energy  

U 

Unit -  N/mm² GPa GPa J 

Sample 1 1,749 18.3 11.6  10.4  19.4  

Sample 2 2,309 8.7 2.3  3.8  14.4  

Sample 3 1,873 12.0 5.3  6.4  17.1  

Sample 4 737 5.8 4.7  7.9  2.7  

Sample 5 1,797 14.7 5.1  8.2  21.6  
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maximum perimeter corresponds to the areas of 

two cracks and red plots position positively 

along the SHAP value axis indicate that more 

AE events are located between cracks with 

large perimeters.  The minimum circularity 

reflects the irregularity of cracks, serving as an 

indicator of their non-circular nature.  In this 

study, voids and cracks are defined by 

circularity.  This result suggests that cracks with 

shapes similar to voids are present.  Blue plots 

position positively along the SHAP value axis 

for minimum circularity indicate that two 

cracks with low circularity are associated with 

more AE events.  In other words, both cracks 

must have crack-like shapes.  These results are 

consistent with previous studies that used 

quantitative indicators of cracks and circularity 

[2, 3].  The distance between cracks is also 

highly important across all modes.  Greater 

distances are associated with more AE events, 

likely because more AE events are counted as 

link weights between cracks that are farther 

apart. 

In this study, the concrete specimens contain 

cracks with varying angles.  Regarding angle-

related indicators, the absolute difference in 

angles shows that cracks with similar angles 

have more AE events in a few samples.  

However, in most samples, more AE events 

occur between cracks with different angles in 

tensile and shear modes.  The angle used in this 

study ranges from 0° to 180°.  Since no 

meaningful interpretation could be attributed to 

the angle relative to the loading direction, 

angle-related indicators do not contribute 

significantly to the regression.  Overall, the 

results of the SHAP value analysis suggest that 

perimeter and circularity are effective 

indicators for estimating AE events between 

cracks. 

5 CONCLUSIONS 

This study investigated the influence of the 

internal structure of concrete specimens on AE 

events under compressive loading using 

machine learning.  RuleFit outperforms 

decision trees in regression accuracy.  

Important factors, such as maximum perimeter 

and minimum circularity, were identified as key 

predictors of the number of AE events.  The 

maximum perimeter represents the area 

between cracks, and larger values are 

associated with a higher density of AE events.  

The minimum circularity indicates the non-

circularity of crack shapes, with smaller values 

leading to an increase in AE event counts.  

Through machine learning based on graph 

theory, it became possible to quantitatively 

demonstrate the relationship between the 

interactions of the internal structure and crack 

behavior.  Furthermore, the potential to clarify 

the relationship between internal structure and 

compressive failure behavior is suggested 

through the analysis of additional factors. 

 
Figure 7: The variables contributing to regression as 

interpreted by SHAP values. 
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