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Abstract: Most of the physical phenomena in engineering problems occur under non-isothermal 

conditions. The occurrence of some physical phenomena or chemical reactions can lead to local 

temperature changes and, consequently, to heat transfer and even local phase changes in the fluid. 

The need to consider the effect of heat transfer and phase changes in the fluid becomes critical in 

analyses of many multi-field problems in porous and fractured materials. A novel DEM-based pore-

scale 3D thermo-hydro-mechanical (THM) model of two-phase fluid flow and heat transfer in fluid 

and solids is based on a direct numerical simulation approach. The model's original concept is based 

on the notion that in a physical system, two domains coexist: the 3D discrete (solid) domain and the 

3D continuous (fluid) domain. Both domains are discretized into a coarse mesh of tetrahedra. The 

THM model was validated by comparing the numerical results with the analytical solution of the 

classic 1D heat transfer problem. Numerical calculations were carried out for bonded granular 

specimens imitating concrete with a 3D DEM fully coupled with 3D CFD (based on a fluid flow 

network) and 3D heat transfer that linked discrete mechanics with fluid mechanics and heat transfer 

at the meso-scale. The heat transfer was related to the fluid (diffusion and advection) and bonded 

particles (conduction). Bonded particle assemblies with random grain distribution were considered. 

Perfect accordance was obtained between numerical and analytical outcomes. In addition, the 

effects of a macro-crack in the specimen on the distribution of fluid pressure, density, velocity, and 

temperature were studied. 
 

1 INTRODUCTION 

The majority of physical phenomena in 
engineering challenges happen in non-
isothermal environments. Furthermore, even if 
the physical system is initially in 
thermodynamic equilibrium, physical 
processes or chemical reactions may cause 
local temperature differences, resulting in heat 
transfer. In analyzing many multi-field issues 
in porous of many multi-field issues in porous 
and fractured materials, the requirement to 
address the effect of heat transport becomes 
crucial. Diffusion, advection, and radiation are 
the basic heat transfer phenomena. These 

phenomena influence the mechanical response 
of the system. 

The most popular technique applied in 
thermo-hydro-mechanical (THM) models is a 
continuum one. The continuum model is based 
on a mathematical framework linking sets of 
differential equations to explain 
thermodynamic, solid, and fluid mechanics 
laws, such as finite element [1]-[3], or finite 
difference implementations [4]. Even though 
they are appealing for macro-scale 
applications, continuum modeling approaches 
based on the finite element method (FEM) or 
the finite volume method (FVM) have 
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significant computational and continuity 
limitations when applied to discontinuous and 
highly deformable media like packed or 
fluidized beds and fractured granular porous 
materials. Classical approaches have 
tremendous numerical challenges generating 
suitably fine meshes in porous media with low 
porosity (less than 15%), such as concrete or 
rocks [5]. Discrete techniques, such as the 
discrete element method (DEM) [6] or the 
finite-discrete element method (FDEM) [7], 
[8], on the other hand, proved to be successful 
in modeling the behavior of particulate 
systems. The capacity to directly predict 
fracture evolution through particulate materials 
is a benefit of DEM. 

Various methods were adopted to combine 
DEM with fluid flow and heat transfer 
phenomena. To connect TH processes with 
DEM, direct numerical simulations (DNS) 
could be used. Different numerical approaches 
(for example, FEM and FVM) were applied to 
solve governing equations. Deen et al. [9] 
suggested a method for implementing 
submerged boundaries that did not require the 
use of an effective diameter. THM processes 
in dense fluid-particle systems were the 
subject of the approach. The proposed 
approach was confined to invariant 
geometries, topologies, and porosities of 
relatively high values (porosities greater than 
those of concrete or rock). DNS-DEM models, 
in reality, are limited to systems with fewer 
particles than CFD models. The lattice 
Boltzmann methods (LBMs) [10], [11], [12] 
rely heavily on the precise depiction of solid-
fluid interfaces and have the same numerical 
and computational restrictions as DNS-DEM 
models. Recently, most DEM-based THM 
models separated fluid flow within reservoirs 
(pores, pre-existing cracks, etc.) from the flow 
between reservoirs [13], [14]–[17].  

The purpose of this work is to demonstrate 
a novel DEM-based pore-scale hydro-
mechanical model of two-phase fluid flow and 
heat transfer in partly saturated porous 
materials with very low porosity like concrete 
subjected to fracture. THM calculations were 
carried out using a 3D DEM in conjunction 
with 3D CFD (based on a fluid flow network 
made up of channels) and 3D heat transfer, 
which connected discrete mechanics, fluid 
mechanics, and heat transfer at the meso-scale. 
Previously, a coupled 2D DEM/CFD model 
based on the fluid flow network without heat 
transfer (formulated by the authors [18], [19]) 
was used to describe hydraulic fracturing in 

partly saturated rock masses with one- or two-
phase laminar viscous two-phase fluid flow 
containing a liquid and gas. 

This paper's DEM-based THM mesoscopic 
technique for modeling fluid flow and heat 
transfer has substantial advantages over other 
existing ones in the literature. Some of the 
advantages are as follows: 
1. the precise tracking of water/gas fractions in 

pores, taking into account their variable 
geometry, size, and position, 

2. a novel method for automatic local meshing 
and re-meshing particle and fluid domains 
to account for changes in their geometry 
and topology, 

3. the use of a coarse mesh of solid and liquid 
domains to generate a virtual fluid flow 
network (VPN) and to solve the energy 
conservation equation,  

4. using FVM to solve the energy conservation 
equation in both domains on a very coarse 
mesh of cells, 

5. to examine supercritical fluid flow, the 
corrected Peng-Robinson equation of state 
[20] was adopted for both fluid phases 
(necessary e.g. for studying THM processes 
in hydraulic fracturing problems), 

6. tracking virtual thermal deformation of 
discrete elements to precisely compute fluid 
volume changes over time, and 

8. two-phase flow. 
The structure of the current study is 

outlined below. Following Section 1, a 
mathematical model of the DEM-based linked 
thermal-hydro-mechanical method is provided 
in Section 2. The validation of the THM model 
is described in Section 3. The influence of 
advection on the cooling of a bonded granular 
assembly is examined in Section 4. A damage 
process in a bonded granular assembly during 
a thermal contraction test is discussed in 
Section 5. Finally, in Section 6, some closing 
remarks are made.  

2 THM MODEL 

The THM model's original concept is based 
on the notion that in a physical system, two 
domains coexist: the 3D discrete (solid) 
domain and the 3D continuous (fluid) domain 
(Fig.1a). Next, both domains are treated as 
continuous and are discretize (Fig.1b). As a 
result, discrete element equations of motion 
are solved in the 3D discrete domain, whereas 
fluid flow and heat transfer equations are 
solved in the 3D continuous domain (red color  
in Fig.1 and Fig.1b).  
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Figure 1: Two domains coexisting in one physical 
system: a) before discretization and b) solid and 

fluid domain after discretization. 

2.1 DEM for cohesive-frictional materials 

DEM calculations were performed with the 
3D spherical explicit discrete element open 
code YADE [21], [22] that allows for a small 
overlap between two contacted bodies (soft-
particle model). Utilizing an explicit time-
stepping scheme, particles in DEM interact 
with one another during translational and 
rotational motions using a contact law and 
Newton's 2nd law of motion [6]. A cohesive 
bond at the grain contact is postulated in the 
model, with brittle failure beneath the critical 
normal tensile force. Under normal 
compression, shear cohesion failure causes 
contact slip, which follows the Coulomb 
friction law. Non-viscous damping was 
applied [23] to accelerate convergence in 
quasi-static simulations. 

The following material constants: Ec, υc, μc, 
C (cohesive contact stress), and T (tensile 
normal contact stress) are required for DEM 
simulations. In addition, R (particle radius), ρ, 
(mass density), and αd (positive damping 
coefficient smaller than 1) are needed. The C/T 
ratio is crucial to adequately simulate the 

failure type of specimens (brittle or quasi-
brittle), the distribution of shear and tensile 
cracks, and the ratio between the uniaxial 
compressive and tensile strength. The material 
constants are usually identified by running a 
series of DEM simulations and comparing 
them with experimental results of simple tests 
(e.g. uniaxial compression, triaxial 
compression, simple shear) [24]. The damping 
parameter is always αd=0.08. For this value, 
the loading velocity v does not affect the 
results [24]. Damage occurs if a cohesive joint 
between spheres disappears after reaching a 
critical threshold. If any contact between 
spheres after failure re-appears, the cohesion 
does not appear more. Note that material 
softening is not considered in the DEM model. 
Although bonds can break by shear, the 
essential micro-scale mechanism for damage 
in the pre-failure regime is bond damage in 
tension. An arbitrary micro-porosity might be 
achieved in DEM since the particles may 
overlap. The fracture is not allowed to 
propagate through aggregate, i.e. the particle 
breakage is not taken into account. The model 
was successfully used by the authors for 
describing the behavior of different 
engineering materials with a granular structure 
(mainly of granular materials [25]-[28]) and 
concrete materials [29]-[34] by taking shear 
localization and fracture into account).  

2.2 Fluid flow model 

The general concept of a fluid flow algorithm 
using DEM and a channel network is adopted 
from [13]-[14]. In this concept, fluid flow is 
simulated by assuming that each particle 
contact is an artificial flow channel (between 
two parallel plates in 2D or along a duct in 3D) 
and those artificial channels connect real 
reservoirs in the particulate medium (pores, 
fractures, and pre-existing cracks) that store 
fluid pressures. Thus, the pressure in reservoirs 
depends both on the mass transported along 
channels from/to other reservoirs and the 
volume changes of reservoirs. Since the 
volume of reservoirs changes due to the 
material deformation (described by discrete 
elements in DEM), the fluid density must also 
change (the fluid in reservoirs is 
compressible). Thus, the fluid moves in 
channels while the reservoirs solely store 
pressure. The artificial channels create a fluid 
flow network. The fluid flow in those artificial 
channels is characterized by a simplified 
laminar flow of an incompressible fluid as 
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opposed to the compressible fluid model in 
real reservoirs. The fluid model in the current 
paper significantly differs from the general 
concept [13]-[14]. The reservoirs (pores, 
cracks, pre-existing cracks, etc.) store now not 
only pressures but also phase fractions, fluids 
densities, energy, and temperature. The 
continuity equation is employed to compute 
the density of fluid phases stored in reservoirs. 
The fluid phase fractions in reservoirs are 
computed by applying the equation of state for 
each phase assuming that fluid phases share 
the same pressure (as in the Euler model of 
multi-phase flow). The mass flow rate in 
artificial channels of a fluid flow network is 
now estimated by solving continuity and 
momentum equations for the laminar flow of 
incompressible fluid. The 3D spherical 
particles are discretized into the 3D 
tetrahedrons [18]. To get a more realistic 
distribution of the unknown variables 
(pressure, fluid-phase fractions, and densities), 
a re-meshing procedure discretizes the 
overlapping spheres, determines the contact 
surfaces, and deletes the overlapping areas 
[18]. As a result, each reservoir is discretized 
into several tetrahedrons (in 3D problems). 
Each tetrahedron in the fluid domain is called 
the Virtual Pore (VP). The artificial channels 
connect the gravity centers of tetrahedrons 
(VPs) to create a fluid flow network called the 
Virtual Pore Network (VPN). All forces 
converted from pressure and shear stress are 
applied to the spheres. All numerical 
parameters might be used without the 
necessity of re-calibration. VPs accumulate 
pressure and store both fluid-phase fractions 
and densities, energy, and temperature. The 
mass change in VPs is related to the density 
change in a fluid phase that results in pressure 
variations. The equation of momentum 
conservation is neglected in tetrahedrons but 
the mass is still conserved in the entire volume 
of tetrahedrons.  

The numerical algorithm can be divided 
into 5 main stages: 
a) estimating the mass flow rate for each 

phase of fluid flowing through the cell faces 
(in channels surrounding VP) by employing 
continuity and momentum equations, 

b) computing the phase fractions and their 
densities in VP by employing equations of 
state and continuity, 

c) computing pressure in VP by employing the 
equation of state, 

d) solving the energy conservation equation in 
fluid and solids, 

e) updating material properties. 
This algorithm is repeated for each VP in 

VPN and each solid cell (stage ‘d’) using an 
explicit formulation. According to the above 
algorithm, incompressible laminar two-phase 
fluid (liquid/gas) flow under non-isothermal 
conditions is assumed in the channels of the 
fluid flow network. The liquid and gas initially 
exist in the material matrix and pre-existing 
discontinuities. The channel length is assumed 
to be equal to the distance between the gravity 
centers of adjacent grid tetrahedrons.  

The hydraulic aperture of the channel is 
directly related to the geometry of the adjacent 
tetrahedrons as 

ℎ = 𝛾𝑒 𝑐𝑜𝑠(90° − 𝜔) (2) 

where e is the edge length between two 
adjacent tetrahedrons,  denotes the angle 
between the edge with the length e and the 
centerline of the channel that connects two 
adjacent tetrahedrons and  is the reduction 
factor, necessary to fit the fluid flow intensity 
to actual complex fluid flow conditions in 
materials. The reduction factor  is determined 
in parametric studies to keep the maximum 
Reynolds number Re along the main flow path 
always lower than the critical one for laminar 
flow. 

2.2 Mass flow rate in channels 

Three flow regimes in the VPN channels 
are distinguished: a) single gas-phase flow 
with gas-phase fraction p=1, b) single liquid-
phase flow with liquid phase fraction q=1 and 
c) two-phase flow (liquid and gas) with 
0<q<1. For single-phase flow in channels 
(flow regime ‘a’ and ‘b’), the fluid moves in 
channels through a thin film region separated 
by two closely spaced parallel plates according 
to a classical lubrication theory [35], based on 
the Poiseuille flow law [36]. As a result, the 
mass flow rate of the single-phase flow along 
channels is 

𝑀𝑥 = 𝜌
ℎ3

12𝜇

𝑃𝑖 − 𝑃𝑗

𝐿
 

(1) 

where 𝑀𝑥 - the mass fluid flow rate (per 
unit length) across the film thickness in the x-
direction [kg/(m s)], h - the hydraulic channel 
aperture (its perpendicular width) [m],  - the 
fluid density [kg/m3], t - the time [s], μ - the 
dynamic fluid (liquid or gas) viscosity [Pa s] 
and P - the fluid pressure [Pa] (𝑃𝑖 and 𝑃𝑗 are 
the pressures in the adjacent VPs).  
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A two-phase flow of two immiscible and 
incompressible fluids in a channel is assumed 
to simulate a two-phase fluid flow (flow 
regime ‘c’), driven by a pressure gradient in 
adjacent VPs. The liquid-gas interface is 
parallel to the channel plates and constant 
along the channel. Gravity forces are 
neglected. The interface between the fluids, 
labeled as j=q, p (q - the lower liquid phase 
and p – the upper gas phase), is assumed to be 
flat in the undisturbed flow state. Under this 
assumption, the model allows for a plane-
parallel solution. The interface position is 
known and is related to fractions of fluid 
phases in adjacent VPs while the volumetric 
flow rates of fluid phases are unknown. 

Continuity and momentum equations 
characterize the flow in each phase. The time 
and pressure are scaled by ℎ𝑝 𝑢𝑖⁄  and 𝜌𝑝𝑢𝑖

2 (hp 
- the height of the upper layer and ui - the 
interfacial velocity). The dimensionless 
continuity and momentum equations are 
presented in [37]. 

The solution details are presented in [19]. 
Solving equations with boundary conditions, 
the mass flow rates 𝑀𝑞,𝑥 and 𝑀𝑝,𝑥 for both 
fluid phases are calculated as well as the shear 
stress 𝜏𝑓0 at the channel surfaces. 

2.2.2 Fluid flow in virtual pores 

VPs, in contrast to the channel flow model, 
assume that the fluid is compressible. The 
fluid pressure can reach 70 MPa in specific 
situations, such as during the hydraulic 
fracturing process. The gas phase exceeds the 
critical point and becomes a supercritical fluid 
under these conditions. For both fluid phases 
in VPs, the Peng-Robinson equation of state 
[20] is used to describe fluid behavior above 
the critical point. 

For most substances, the Peng-Robinson 
equation of state provides a good fit for the 
vapor pressure, however predicting molar 
volumes can be very inaccurate. The forecast 
of saturated liquid molar quantities might 
deviate by l0-40% [38]. Peneloux and Rauzy 
[39] proposed an effective correction term 

 
𝑉𝑞

𝑐𝑜𝑟𝑟 = 𝑉𝑞 + 𝑠, (2) 
 
where s is the small molar volume 

correction term that is component dependent; 
𝑉𝑞 is the molar volume predicted by Eq.2 and 
𝑉𝑞

𝑐𝑜𝑟𝑟
 refers to the corrected molar volume. 

The value of s is negative for higher molecular 

weight non-polar and essentially for all polar 
substances.  

For each phase, the mass conservation 
equation is used. The mass transfer between 
phases and the grid velocity is till now ignored 
when there is no internal mass source. The 
discretized form of the mass conservation 
equation for the liquid phase is 

𝛼𝑞,𝑖
𝑛+1𝜌𝑞,𝑖

𝑛+1𝑉𝑖
𝑛+1 − 𝛼𝑞,𝑖

𝑛 𝜌𝑞,𝑖
𝑛 𝑉𝑖

𝑛

∆𝑡

+ ∑(𝜌𝑞,𝑓
𝑛 𝑈𝑓

𝑛𝛼𝑞,𝑓
𝑛 )

𝑓

= 0 

 

𝑉𝑖
𝑛+1 = 𝑉𝑖

𝑛 +
𝑑𝑉

𝑑𝑡
∆𝑡 

(3) 

where f is the face (edge) number, 𝑈𝑓
𝑛 denotes 

the volume flux through the face [m3/s], based 
on the average velocity in the channel, 𝛼𝑞,𝑓

𝑛  is 
the face value of the fluid phase volume 
fraction [-], t is the time step [s], n denotes the 
time increment and i is the VP number [-]. The 
explicit formulation is used instead of an 
iterative solution of the transport equation 
during each time step since the volume 
fraction at the current time step is directly 
computed from known quantities at the 
previous time step. Similarly, the mass 
conservation equation for a gas phase is 
introduced. The product 𝜌

𝑞
𝑈𝑓

𝑛𝛼𝑞,𝑓
𝑛  in Eq.3 is 

the mass flow rate 𝑀𝑞,𝑓 of the liquid phase 
flowing through the face f of VPi. The density 
of the liquid phase can be calculated by 
solving the mass conservation equation for 
both phases. 

Because the fluid phases share the same 
pressure the liquid phase fraction is computed. 
The gas-phase fraction is computed as 𝛼𝑝,𝑖

𝑛+1 =
1 − 𝛼𝑞,𝑖

𝑛+1. Equation of state is used to 
calculate the new pressure 𝑃𝑖

𝑛+1 in VPi.  

2.3 Heat transfer 

Heat is transferred in both the fluid and 
solid domains. When it comes to heat transfer 
in multi-phase fluid flow, the temperature is 
shared, but enthalpy is transferred. The heat 
transfer model is simplified. A homogeneous 
heat transfer model is assumed in multiphase 
flow (mass transfer between phases is not 
supposed to be taken into account). The 
multiphase fluid is homogenized to a single-
phase fluid. The effective fluid properties and 
velocity are calculated using volume averaging 
over the phases. The numerical solution uses 
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the same very coarse mesh of both domains 
(Fig.1b) that is used to create the fluid flow 
network to solve the governing equations. 

2.3.1 Heat transfer in fluid  

The fluid is incompressible and 
homogeneous. The viscous dissipation of 
energy is not taken into account. The energy 
conservation equation is shared by all phases 
in the homogeneous model and is expressed in 
integral form 

∫
𝜕𝜌𝑒𝑓𝑓𝐸

𝜕𝑡
𝑑𝑉

𝑉
+ ∮ 𝜌𝑒𝑓𝑓𝑣⃑𝐸 ∙ 𝑑𝐴 =

∮ 𝜆𝑒𝑓𝑓∇𝑇 ∙ 𝑑𝐴 + ∫ 𝑆ℎ𝑉
, 

(4) 

where 𝜌
𝑒𝑓𝑓

 is the effective density of the fluid 
[kg/m3], 𝐸 denotes the total energy [J], t is the 
time [s], 𝑣⃑ is velocity vector [m/s], 𝑇 is the 
temperature [K], 𝜆𝑒𝑓𝑓 denotes the effective 
thermal fluid conductivity [W/(mK)] and 𝑆ℎ 
represents the energy source term. Assuming 
an incompressible and laminar flow of the 
homogeneous fluid, the enthalpy h equation of 
state is 

ℎ = ∫ 𝑐𝑝𝑑𝑇
𝑇

𝑇𝑟𝑒𝑓
, 

(

5) 

where 𝑇𝑟𝑒𝑓 is the reference temperature [K] 
and 𝑐𝑝 denotes the specific heat for constant 
pressure [J/(kg·K)]. The effective fluid 
properties and velocity are computed by 
volume averaging over the phases. The 
specific heat capacity is assumed to be 
independent of composition and pressure. 

 

𝑐𝑝 = ∑ 𝛼𝑖𝑐𝑝𝑖𝑖 = 𝑐𝑜𝑛𝑠𝑡. (
5) 

 
Equation 4 is applied to each fluid cell 

(tetrahedron) in the computational domain. 
The finite volume method is used to solve 
Eq.4.  

2.3.2 Heat transfer in solid 

The energy conservation equation has the 
following integral form if there is no internal 
heat sources, and constant density in solid 
regions 

𝜌𝑠 ∫
𝜕𝐸

𝜕𝑡
∙ 𝑑𝑉

𝑉

= ∮(𝜆𝑠∇𝑇) ∙ 𝑑𝐴, 
(

6) 

where E is the total energy, equal to enthalpy 
ℎ = ∫ 𝑐𝑝𝑑𝑇

𝑇

𝑇𝑟𝑒𝑓
, 𝜌𝑠 denotes the solid density 

[kg/m3], 𝜆𝑠 is the thermal conductivity of solid 
[W/(mK)], 𝑇𝑟𝑒𝑓 denotes the reference 
temperature and 𝑐𝑝 is the specific heat in 
constant pressure. Equation 6 is applied to 
each cell (tetrahedron) in the solid domain. 
The total energy is calculated using the 
enthalpy equation of the state 

𝐸 = 𝑐𝑝(𝑇 − 𝑇𝑟𝑒𝑓). 
(

7) 

The DEM-based THM model was 
implemented by the authors into the open-
source software package YADE [22] which is 
already parallelized by computer cluster nodes 
using the OpenMPI library.  

3 VALIDATION OF THM MODEL 

The THM model was validated by 
comparing the numerical findings with the 
analytical solution for the classic 1D heat 
transfer problem (diffusion) in the cohesive 
granular bar specimen 

𝜕𝑇

𝜕𝑡
= 𝛼𝑒𝑞𝑣

𝜕2𝑇

𝜕𝑥2, (8) 

where 𝛼𝑒𝑞𝑣 is the effective thermal diffusivity 
[m2/s] and t is the time [s]. The initial and 
boundary conditions for the analytical solution 
of the 1D heat equation are as follows 

𝑇(𝑥, 0) = 323.16   [K]      𝑥 ∈< 0, 𝐿 >, (9) 

𝑇(0, 𝑡) = 𝑇(𝐿, 𝑡) = 293.16   [K]      𝑡 ≥
0, 

(10) 

where L is the length of the bar. Using the 
Fourier series, the unsteady solution becomes 

𝑇(𝑥, 𝑡) = ∑ 𝐷𝑛 sin
𝑛𝜋𝑥

𝐿
∞
𝑛=1 𝑒

𝛼
𝑛2𝜋2𝑡

𝐿2 , (11) 

where  

𝐷𝑛 =
2

𝐿
∫ 𝑇(𝑥, 0) sin

𝑛𝜋𝑥

𝐿
𝑑𝑥

𝐿

0
. (12) 

The calculations were performed using a 
bonded granular bar specimen with a random 
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distribution of spheres (Fig.2a). The effective 
thermal diffusivity 𝛼𝑒𝑞𝑣 was calculated for the 
volume-averaged phase properties 

𝛼𝑒𝑞𝑣 =
𝜆𝑒𝑓𝑓

𝑐𝑝,𝑒𝑓𝑓𝜌𝑒𝑓𝑓
 , (13) 

where  

𝜆𝑒𝑓𝑓 =
1

𝑉𝑟
∑ 𝜆𝑘𝑉𝑘𝑘  , 

𝑐𝑝,𝑒𝑓𝑓 =
1

𝑉𝑟
∑ 𝑐𝑝,𝑘𝑉𝑘

𝑘

 

𝜌𝑒𝑓𝑓 =
1

𝑉𝑟
∑ 𝜌𝑘𝑉𝑘

𝑘

 

(14) 

and Vr - the total volume of the bar specimen 
[m3], k - the phase index, 𝑉𝑘 - the k-phase 
volume [m3], 𝜆𝑘 - the heat conductivity of the 
phase k [W/(m·K)], 𝑐𝑝,𝑘 is the specific heat in 
constant pressure of the phase k [J/(kg·K)] and 
𝜌𝑘 is the phase density k [kg/m3]. The initial 
and boundary conditions are shown in Fig.2b 
(the bar specimen was cooled down by 30 K). 
The effective thermal diffusivity and boundary 
conditions imitated heat transfer by diffusion 
only in the equivalent solid bar, made of a 
fictitious homogeneous material with effective 
thermal properties (Eq.14). The single-phase 
flow of water was assumed. 

The numerical results of cooling the 
concrete bar specimen with a random 
distribution of spheres (Fig.2a) were compared 
to an analytical solution of the one-
dimensional diffusion problem in an 
equivalent solid bar. In general, all properties 
of a fluid flowing under non-isothermal 
conditions are more or less temperature-
dependent. The most important property of a 
fluid is density. The DEM-based THM model 
uses the corrected Peng-Robinson equation of 
state to calculate the fluid phase density. 
Hence, the density depends on temperature 
and pressure. In this study, it was assumed for 
the sake of simplicity that other fluid 
properties were independent of temperature 
since most of the simulations presented were 
performed for a maximum temperature 
difference of 30 K. In that temperature range, 
the dynamic viscosity of the fluid slightly 
changed only. Therefore, we neglected the 
temperature dependence of viscosity in the 
current paper and the thermal properties of the 
fluid. 

From the phase properties, the effective 

material properties of the equivalent solid were 

determined using Eq.14: 𝜆𝑒𝑓𝑓 = 3.357
W

m∙K
, 

𝑐𝑝,𝑒𝑓𝑓 = 929.51 
J

kg∙K
 and 𝜌𝑒𝑓𝑓 = 2422.74 

kg

m3. 

For a time value of 100 s, the comparison 

results in Fig.3 are shown. 
 

 

a)                                         b) 

 

Figure 2: Bonded bar specimen during diffusion 

simulations: a) bar specimen and b) initial and boundary 

conditions (q - fluid mass flow rate and qh - heat transfer 

rate) 

 

The numerical results agree with the 
analytical solution. After 100 s of cooling, the 
largest difference between numerical and 
analytical values was 0.98 K. The density 
ranged from 1000.02 kg/m3 to 1014.28 kg/m3 
after 100 s of cooling. In the estimation of the 
water density, the Peng-Robinson equation of 
state with a correction generated little 
inaccuracy (less than 1.3%). The fluid density 
was slightly overestimated. For single-phase 
fluids and flow regimes near stagnant flows, 
the Peng-Robinson equation of state offers no 
significant advantages over other models (e.g. 
IAPWS for water and steam).  
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Figure 3: Temperature along vertical center line of 

cohesive granular bar specimen during cooling  

after t=100 s 

3 EFFECT OF ADVECTION ON 

COOLING OF BAR SPECIMEN 

A random distribution of spheres (Fig.2a) 
was used to evaluate the effect of advection on 
the cooling of the bonded bar specimen 
(imitating concrete). One simulation type was 
carried out: for a low Peclet (Pe) number. The 
assumption was that water flowed in a single 
phase. Heat transfer in the bar specimen was 
simulated by diffusion (due to temperature 
differences) and advection (due to fluid mass 
movement) using the initial and boundary 
conditions in Fig.4. The bar specimen was 
cooled down again by 30  K. The one pressure 
difference between the two edges of the bar 
specimen was defined: 0.9 MPa (low Peclet 
number). The numerical results are 
demonstrated in Figs.5-6. 

After t=100 s of cooling, the temperature 
difference between diffusion without 
advection and diffusion with advection 
reached 1.09 K (Fig.5). The maximum Peclet 
number in the fluid domain was 24.  

The advection accelerated a cooling 
process. The fluid velocity was very small; it 
did not exceed a velocity of  .92·1 -9 m/s. The 
velocity vectors were almost parallel to the 
vertical sides (Fig.6), indicating that the fluid 
flow in the bar specimen was 1D. From the 
bottom to the top, the fluid pressure varied 
approximately linearly along the bar specimen. 
After 100 s of cooling, the fluid density ranged 
from 995.7 to 1012.5 kg/m3. In the density 
estimation, the Peng-Robinson equation of 
state with a correction produced an 
insignificant error (less than 1.3%) (the fluid 
density was slightly overestimated). 

 
 

Figure 4: Initial and boundary conditions in cohesive 

granular bar specimen during diffusion and advection  

(q - fluid mass flow rate and qh - heat transfer rate) 

 

 

 

Figure 5: Temperature along vertical center line of 

cohesive granular bar specimen during cooling after 

t=100 s (diffusion in blue color, and diffusion + 

advection in red color) 

 
In comparison to diffusion-only heat 

transfer, the temperature change along the 
vertical centerline was not symmetric. As a 
result of a colder fluid flowing (advection) in 
the same direction as the temperature shift, a 
significant spatial shift of the temperature 
happened in the fluid flow direction (Fig.6). 
The temperature of the bar fluctuated very 
little along its horizontal cross-section. The 
largest temperature difference in the bar's 
middle horizontal cross-section was only 
0.008 K. 
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Figure 6: Fluid velocity vectors in bonded bar specimen 

after cooling time of t=100 s due to diffusion and 

advection 

 

4    THERMAL CONTRACTION TEST 

 A thermal contraction test during cooling 
of the bonded bar specimen with a random 
distribution of spheres was performed (Fig.2a). 
To eliminate advection at the start of the 
cooling process and keep the fluid beyond the 
phase change conditions, the boundary and 
initial conditions of Fig.7 were used. The flow 
of two-phase fluids was studied. The bar 
specimen was composed of 80% water and 
20% air. Sphere displacements and rotations 
were fixed at both ends of the specimen.  

To accelerate the heat transfer process and 
its effect on the damage mechanism in the 
specimen, the water and air heat transfer 
coefficients were multiplied by 10, and the 
solid heat transfer coefficient of 420 W/(m K) 
(typical for silver) was adopted. Solids were 
assumed to have a thermal (linear) expansion 
coefficient of 0.00083 1/K. 

Figure 8 illustrates a deformed bar 
specimen with a macro-crack, broken normal 
sphere contacts, and sphere displacements 
after 17 s of cooling. 

 

 
Figure 7: Initial and boundary conditions in cohesive 

granular bar specimen in thermal contraction test (q - 

fluid mass flow rate and qh - heat transfer rate) 

 

 
Figure 8: Grain diameter reduction in bonded bar 

specimen during thermal contraction test after time t=17 

s (largest diameter reduction is in black, smallest 

diameter reduction is in white) 

 
The temperature distribution in the bar 

specimen in thermal contraction test in entire 
specimen and along vertical center line is 
shown in Fig.9. 

The temperature was the highest (333.44 K) 
in the specimen near the macro-crack edge 
(Fig.9a). A macro-crack occurred in the bar 
specimen due to tension. It was created at the 
bar specimen's weakest zone near the top edge 
in a slightly different location than during pure 
uniaxial tension. There was a noticeable 
vertical movement of spheres in the specimen 
mid-region. The mean diameter of spheres d50 
reduced from 6.032 mm to 5.837 mm (by 
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around 3%) with the smallest changes in the 
bar’s mid-region. 

 

 
Figure 9: Temperature distribution in bonded bar 

specimen in thermal contraction test after time t=17 s:  

a) in vertical mid-cross-section of specimen and  

b) along vertical center line 
 
In the damaged location, the fluid pressure 

dropped to 0.0116 MPa (0.0884 MPa below 
the original pressure). Once the normal 
contacts broke and the macro-crack began to 
expand, the pressure drop was produced by an 
increase in fluid volume in the damaged area 
due to tensile strain. 

5 CONCLUSIONS 

This work proposes a new DEM-based 
pore-scale thermal-hydro-mechanical model of 
two-phase fluid flow in partially saturated 
porous materials with low porosity (like 
concrete) that was coupled with heat transfer. 
The numerical findings were compared to the 
analytical solution of the 1D heat transfer 
problem in an analogous bonded bar specimen 
to validate the model. The effect of advection 
was also investigated. Based on mesoscale 
simulations, the following  conclusions can be 
offered: 

During the 1D heat transfer problem, the 
largest temperature difference between 
numerical and analytical findings was just 0.98 
K. 

Advection increased the cooling of the 
specimen. The highest temperature difference 
between cooling by diffusion and cooling by 
diffusion with advection was 1.09 K after 100 
s of cooling with a pressure decrease of 0.9 
MPa at the specimen height. 

The pressure difference between the two 
edges of the specimen increased the Peclet 
number to 24 and caused a significant right 
shift of the temperature distribution along the 
vertical centreline of the specimen.  
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