
 

12th International Conference on Fracture Mechanics of Concrete and Concrete Structures 
FraMCoS-12 

B.L.A. Pichler, Ch. Hellmich, P. Preinstorfer (Eds) 

 
 

1 

 

NOVEL 2.5D LAYERED MODEL TO SIMULATE DISCRETE CRACK GROWTH IN 

CONCRETE SPECIMENS 

 

BENIAMIN KONDYS
*
 AND JERZY BOBIŃSKI

*
 

* Gdańsk University of Technology, Faculty of Civil and Environmental Engineering 

11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland 

e-mail: beniamin.kondys@pg.edu.pl, jerzy.bobinski@pg.edu.pl 

Key words: Concrete, Cracks, Mesostructure, Finite Element Method, Cohesive Elements 

Abstract: The paper presents a novel 2.5D model to simulate concrete or reinforced concrete 

specimens. The main idea of this approach is to define the set of 2D plane models extracted from the 

3D model or specimen’s microtomography (μCT) scan along selected direction. The definition of 

several cut planes allows for defining different material and geometrical configurations (e.g. different 

mesostructure topology and the inclusion of reinforced bars). These plane cuts can be analysed 

independently as simple standalone 2D models, but they also can interact with neighbouring plane or 

planes. Interaction between planes is adhered to by adding a set of horizontal and vertical springs 

with a prescribed stiffness. Consequently, the proposed approach is still a two-dimensional model but 

is capable of mimicking the behaviour of three-dimensional specimens. A detailed description of the 

method is provided, along with some preliminary results, and the difference between pure 2D 

simulations and the 2.5D approach is outlined. 
 

 

1 INTRODUCTION 

Accurate simulations of concrete and 

reinforced concrete specimens is a quite 

challenging problem. The first reason is the 

complex nonlinear behaviour of concrete itself. 

Fundamentally, it is manifested by the presence 

of cracks in which strains/deformations are 

concentrated. These regions are very thin and 

require relatively fine finite element (FE) 

meshes to accurately describe their topology 

[1]. 

The second source of complexity comes 

from the observation level. On the macroscale, 

concrete can be considered a homogeneous 

material, which allows for defining relatively 

coarse FE meshes [2-3]. Only in reinforced 

concrete (RC) specimens this homogeneity is 

disrupted by bars and stirrups. At the 

mesoscale, however, different phases like 

aggregates, interfacial transition zones (ITZs), 

cement matrix and air voids can be 

distinguished. Given their dimensions, it is 

necessary to apply a fine mesh discretisation 

technique once more [4–7]. 

Finally, the dimensional aspect is also 

important. In reality, all specimens possess 

three-dimensional characteristics. In structural 

analysis, several simplified approaches are 

commonly used: rods, beams, plates or shells. 

In research calculations, if the analysis of 

cracks is important, usually at least two-

dimensional models (under plane stress or plane 

strain assumption) are employed [4-8]. When 

the mesostructure of the concrete is defined and 

reinforcement is present, such an approach may 

seem to be too simplistic to obtain results 

consistent with experiments. In such cases, the 

three-dimensional model should be formulated, 

but this would require an enormous number of 

finite elements [9] and finds its application 

primarily in very small models [10].  

In the presented paper, a compromise 

between 2D and 3D modelling is proposed. 

This new approach is based on a set of 2D 
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layers extracted from a 3D specimen along the 

predefined direction. The interaction between 

neighbouring layers is imposed via horizontal 

and vertical springs with prescribed stiffness. 

Interacting 2D layers may have different 

topologies of mesostructure and FE meshes 

which allow incorporating connection between 

layers with/without reinforced bars. Concrete is 

modelled as a heterogenous mesoscale material 

(cement matrix, aggregates, air voids, rebars, 

ITZs surrounding aggregates and rebars) with 

cracks introduced in a discrete approach as a 

strong discontinuity by cohesive elements. 

Cohesive elements with traction-separation 

constitutive law and material parameters 

varying of neighbouring bulk elements 

(cement-cement, cement-aggregates i.e. ITZs, 

and cement-rebar interfaces) are inserted in the 

bulk mesh by MATLAB script [11] to 

implement the possibility of initiation and 

propagation discrete cracking.  

2 METHOD 

2.1 2.5D model 

From a 3D model or 3D specimen’s μCT 

scan variable number of cut planes are defined 

along the chosen direction (Figure 1). The out-

of-plane thickness of each cut is adjusted 

according to the number of planes and the total 

thickness of specimen. The 2.5D model similar 

to the standard 2D model is intended to simulate 

only ‘in-plane’ loadings (i.e. without torsion, or 

biaxial bending). Boundary conditions and 

prescribed displacements are separately defined 

on each 2D plane. Finally, 2D planes are 

connected to each other by a set of springs. 

 

Figure 1: 3D mesoscale specimen model and 3 
different cut planes. 

2.2 Springs 

The proposed methodology addresses the 

issue of mesh intersection and coupling through 

a four-stage process. As illustrated in Figure 2, 

the overlapping meshes are identified through 

the planar intersection, where Mesh A and 

Mesh B are superimposed. The subsequent step 

in the procedure is to identify the pairs of 

overlapping elements. (Figure 2C).  

The intersection procedure is followed by a 

node connection strategy, depicted in Figure 3, 

where the overlapping area (𝐴𝑖𝑛𝑡𝑒𝑟) is 

identified, and new nodes (A4/B4) are inserted 

at its centroid position. These nodes are then 

connected to their respective element nodes 

using multi-point constraints (MPC) - node A4 

is linked to the nodes of Mesh A element, while 

B4 is connected to the nodes of Mesh B 

element. Furthermore, the configuration of the 

spring elements in both the X and Y directions 

between nodes A4 and B4 ensures a mechanical 

coupling while allowing for the 

accommodation of relative deformation. 

The spring stiffness between coupled nodes is 

derived from the finite element model 

parameters, where the total spring constant 𝐾𝑖 
is calculated as the product of the overlapping 

area and specific surface stiffness:  

 𝐾𝑖 =
𝐴𝑖𝑛𝑡𝑒𝑟
𝑡

∙ 𝑘𝑖 (1) 

where t means the distance between layers 

(average out-of-plane thickness) and the 

specific surface stiffness 𝑘𝑖 is determined by the 

material properties of the connected elements: 

 
Figure 2: A) Mesh A; B) Mesh B; C) Mesh A and Mesh 
B overlapped in one plane with highlighted one pair 

of overlapping elements. 
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Figure 3: A) Intersection of elements overlapping 

areas (Ainter) and new nodes A4/B4 in the centroid of 
the Ainter; B) New nodes A1/B4 attached to existing 

nodes using multi-point constraints (MPC) and X and 
Y springs between nodes A4 and B4. 

 𝑘𝑖 = 𝐶 ∙ 𝐸 (2)  

where C is a constant and 𝐸 is the Young 

modulus. When a spring connects two elements 

made of different materials, the following 

relationship may be alternatively applied: 

 𝑘𝑖 = 𝐶 ∙ √𝐸𝐴𝐸𝐵 (3)  

where 𝐸𝐴 and 𝐸𝐵 represent the elastic moduli 

assigned to the respective intersecting 

elements. This formulation ensures that the 

coupling stiffness appropriately reflects both 

the geometric intersection and material 

characteristics of the connected regions. 

2.3 Material definition 

In general, for the 2.5D method, any 

constitutive law can be applied to describe 

cracks in concrete, including both continuous 

and discontinuous approaches e.g., elastoplastic 

models (utilising plasticity theory and 

accounting for permanent deformations), 

damage models (based on material stiffness 

degradation variables, including material 

models used in discrete methods such as CZM 

(Cohesive Zone Model) and XFEM (eXtended 

Finite Element Method)), as well as coupled 

approaches. Therefore, the choice of 

constitutive approach does not affect the 

formulation of the springs (Section 2.2) and, 

consequently, the behaviour of the 2.5D model 

described in Section 2.1. 

Within this work to model crack initiation 

and propagation, the CZM method was used, 

where discrete cracks are implemented to the 

FEA model by the insertion of interface 

cohesive elements governed by the traction-

separation law between bulk elements 

exhibiting linear elastic behaviour.  

The traction-separation law relates traction 

stresses to relative displacements (Figure 4), 

incorporating both normal 𝑡𝑛 and tangential 

𝑡𝑠 components according to the Hilleborg 

fictitious crack model [12]. For the normal 

direction, 𝑡𝑛 evolves based on crack opening 

𝛿𝑛: 

 𝑡𝑛 = {
𝜎𝑛,       𝜎𝑛 ≤ 𝑓𝑡
𝑓(𝛿),   𝜎𝑛 > 𝑓𝑡

 (4)  

where 𝑓𝑡 is the tensile strength, and 𝑓(𝛿) is the 

softening function. The traction stress vector 

depends on interface stiffness 𝑘𝑛, 𝑘𝑠, and 

relative displacements 𝛿𝑛, 𝛿𝑠: 

 [
𝑡𝑛
𝑡𝑠
] = [

𝑘𝑛 0
0 𝑘𝑠

] [
𝛿𝑛
𝛿𝑠
] (5)  

Crack initiation occurs when the quadratic 

stress criterion is met: 

 {
⟨𝑡𝑛⟩

𝑡𝑛0
}

2

+ {
𝑡𝑠
𝑡𝑠0
}
2

= 1 (6)  

with 𝑡𝑛0, 𝑡𝑠0 as critical stresses, where ⟨ ⟩ 
denotes ramp function: 

 ⟨𝑥⟩ = max{0; 𝑥} (7)  

ensuring negative (compressive) stresses are 

excluded. 

 
Figure 4: Exponential softening curve for traction-

separation law for pure tension mode. 
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Once initiated, stiffness degrades according to 

the damage variable D, in this case 

exponentially defined: 

𝐷 = 1− {
𝛿𝑚
0

𝛿𝑚
max

}

{
 
 

 
 

1 −

1 − exp [−𝛼 (
𝛿𝑚
max − 𝛿𝑚

0

𝛿𝑚
𝑓 − 𝛿𝑚

0
)] 

1 − exp(−𝛼)

}
 
 

 
 

 (8)  

Here 𝛿𝑚
0  is the effective relative displacement 

at crack initiation, 𝛿𝑚
𝑓

 is the displacement at 

complete stiffness degradation, 𝛿𝑚
max is the 

maximum effective relative displacement 

during loading, and α is a material parameter 

controlling the damage evolution rate. This 

relationship is valid while: 

 𝛿𝑚
max ≤ 𝛿𝑚

𝑓
 (9)  

otherwise: 

 𝐷 = 1.0 (10)  

When the initiation criterion described by 

Equation (6) is fulfilled in a particular cohesive 

element, the stiffness of that element begins to 

degrade. This softening effect is captured 

through the reduction of interface stiffness: 

 𝑘𝑛 = (1 − 𝐷)𝑘𝑛0 (11)  

and: 

 𝑘𝑠 = (1 − 𝐷)𝑘𝑠0 (12)  

where 𝑘𝑛0 and 𝑘𝑠0 represent the initial stiffness 

in the normal and tangential directions, 

respectively. 

This model ensures that stiffness 

degradation begins upon satisfying the crack 

initiation criterion and evolves as a function of 

effective relative displacement, with normal 

and tangential components coupled through the 

traction-separation law.  

For bulk/solid finite elements linear elastic 

stress-strain behaviour is defined by Hooke’s 

law by means of Young's modulus 𝐸 and 

Poisson's ratio 𝜈 (under plane stress): 

[

𝜎11
𝜎22
𝜎12
] =

𝐸

1 − 𝜈2
[

1 𝜈 0
𝜈 1 0

0 0
(1 − 𝜈)

2

] [

𝜀11
𝜀22
𝜀12
] (13)  

3 RESULTS 

3.1 Montevideo Splitting Test  

The novel 2,5D simulation method was 

first evaluated using the Montevideo 

Splitting Test (MVD). The following data 

were adopted from previous research [8, 

13]: mesostructure images taken from three 

sections (S1-S3), specimen measurements 

of 70x70x70 mm (𝑊 ×𝐻 × 𝐿), boundary 

conditions (Figure 5), and material 

parameters (𝐺𝐹 is a fracture energy) for bulk 

and cohesive elements (as listed in 

Tables 1-2). 

 

Figure 5: Single 2D MVD models for different 
mesostructures (S1-S3) and notch geometry. 

Table 1: Material parameters for bulk elements for 

MVD model 

parameter aggregate 
cement 

matrix 
steel 

E [GPa] 40 20 200 

ν [-] 0.2 0.2 0.3 

Table 2: Material parameters for cohesive elements 

for MVD model 

parameter 
cem-cem 

interfaces 

ITZ  

interfaces 

𝑘𝑛0 = 𝑘𝑠0 

[MPa/mm] 
106 106 

𝛼 [-] 7.5 7.5 

𝑓𝑡 [MPa] 3.5 1.75 

𝐺𝐹 [N/m] 70 35 
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In this model specimen is supported by steel 

flat bar, while the load application is applied 

through a steel wedge acting directly on a 

5x15 mm notch.  

Figure 6 presents obtained crack patterns for 

different sections with stiffness 𝑘𝑖 taken as 

102 MPa, while results with the stiffness 𝑘𝑖  

equal to 1012 MPa are depicted in Figure 7 (for 

a sake of simplicity, the thickness t was 

assumed to be equal to 1.0 m (see Equation (1)).  

For relatively low 𝑘𝑖 stiffness values, up to 

1010 MPa, the results show almost complete 

convergence with standalone 2D 

models.  However, as the stiffness increases, a 

significant enhancement in the interaction 

between  the  connected    planes   is    observed, 

highlighting  the crucial  role of  stiffness in  the 

 
Figure 6: MVD 2,5D model crack patterns results set 

for sections S1-S3 (𝑘𝑖 = 10
2 MPa). 

behaviour of the system under 2.5D analysis. It 

should be noted that too large stiffness 𝑘𝑖 arrests 

the formation of cracks in all sections and, in 

consequence, no softening in force-

displacement curve is produced. 

3.2 Three-point bending test  

The three-point beam bending test (TPBT) was 

utilized as a second benchmark for the proposed 

method. The images of the mesostructure from 

three different sections S1-S3, the geometric 

dimensions of the specimen 40x80x320 mm 

(𝑊 ×𝐻 × 𝐿), boundary conditions (Figure 8), 

and the parameters for bulk and cohesive 

materials (Table 3-4) have been taken from 

previous studies by Trawiński et al. [4]. 

 

 
Figure 7: MVD 2,5D model crack patterns results set 

for sections S1-S3 (𝑘𝑖 = 10
12 MPa). 
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Figure 8: Single 2D beam model geometry and three 

different real mesostructures S1-S3. 

Consistent with studies in [4], a two-scale 

model is employed, wherein a 4-phase 

mesoscale model is distinguished in the central 

region, where the expected occurrence of stress 

concentration induced by the 3x8 mm notch is 

anticipated, along with the remaining 

homogeneous part of the beam. 

Table 3: Material parameters for bulk elements for 

TPBT model 

parameter aggregate 
cement 

matrix 

homog. 

part 

E [GPa] 47.2 29.2 36.1 

ν [-] 0.2 0.2 0.2 

Table 4: Material parameters for cohesive elements 

for TPBT model 

parameter 
cem-cem 

interfaces 

ITZ  

interfaces 

𝑘𝑛0 = 𝑘𝑠0 

[MPa/mm] 
106 106 

𝛼 [-] 7.5 7.5 

𝑓𝑡 [MPa] 4.4 1.6 

𝐺𝐹 [N/m] 40 20 

Obtained results are shown in Figure 9 

(stiffness 𝑘𝑖 taken as 102 MPa) and Figure 10 

(stiffness 𝑘𝑖 equal to 1012 MPa). Similar 

conclusions as before can be drawn. With small 

spring stiffnesses, almost independent sections 

behaviour is observed, while usage of larger 

stiffness values cause modification of crack 

pattern observed in each section. 

 4 SUMMARY 

The new approach to simulate concrete and 

reinforced concrete specimens has been 

proposed. The 2.5D model is formed as a set of 

2D planes with spring connections between 

neighbouring ones. It enables the execution of 

2D calculations while accounting for various 

topology configurations in individual cuts and 

the interactions between plane models. 

Preliminary results have confirmed the ability 

of this idea to reproduce the 3D character of the 

analysed specimens. 

The future research will be concentrated on 

the detailed comparison between 2D, 2.5D and 

4D simulations. In order to properly define all 

three models (based on the same 

mesostructure), a 3D mesostructure generator is 

currently developed with the possibility to 

extract 2D cuts. It will also enable the 

comparison of computational time efficiency 

across all approaches. 
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