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Abstract. Additive manufacturing is emerging as an appealing alternative to standard construction
methods, providing capabilities for optimum designs while reducing material usage and construction
waste. However, additively manufactured concrete members often come in several non-typical, e.g.,
tessellated and/or polytope geometries. In this study, a computational framework is developed for
the analysis of concrete members reinforced with continuous steel fibres. To this end, a cohesive
phase field model is used to simulate fracture in the concrete matrix within a Virtual Element Method
(VEM) for the discretization of the resulting coupled system of governing equations. To accurately
represent the reinforcement layout while retaining a relatively simple computational model, an em-
bedded element technique is adopted. This combined framework aims at optimizing the discretization
processes, overcoming limitations associated with finer mesh requirements while delivering accurate
predictions. The effectiveness and robustness of the combined methodology is explored within the
context of 2D deformable domains.

1 INTRODUCTION

The increasing demand for stronger, lighter
and environmentally aware structures has
driven attention towards Additive Manufactur-
ing (AM) technologies. This is mainly due to
the unique possibilities it offers, compared to
traditional construction methods. Carbon fi-
bre reinforced polymers (CFRPs), known for
their exceptional strength-to-weight ratio and
durability, have become a key material in
this transition, offering innovative solutions for
high-performance applications. CFRPs can be
broadly categorized into two main types: those
reinforced with chopped fibres, which are ideal
for complex geometries and cost-sensitive ap-
plications, and those with continuous fibres
(Continuous Carbon Fibre Reinforced Poly-

mers - CCFRPs), providing high-performance
structural components with tailored properties.

In the 1980s, CCFRPs were industrially
used, by adopting the Automated Fibre Place-
ment (AFP) technique [2], which was devel-
oped to create multidirectional laminates by de-
positing fibres and prepregs along predefined
paths. Despite its advantages, AFP faces lim-
itations regarding material options, shape com-
plexity and high costs. However, recent tech-
nological advancements regarding 3D printing
have enabled the integration of CCFRPs into
additive manufacturing processes [3]. One of
the most widely used AM categories is Fused
Filament Fabrication (FFF) [4]. In CCFRPs
manufactured via FFF, the fibres are typically
bonded with a matrix material, often a thermo-
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plastic (PLA, nylon, PEEK, etc) through a pro-
cess of extrusion and heat bonding [5]. The ma-
trix material is heated to a molten state and ex-
truded around the continuous fibres, as the fila-
ment is deposited layer by layer. As the speci-
men cools and solidifies, the thermoplastic ma-
trix hardens, encapsulating the fibres and creat-
ing a strong bond between matrix and reinforce-
ment [6].

Nevertheless, additively manufactured com-
posites produced via FFF can often have com-
plex and in cases tessellated geometry, with
variable stiffness distribution and heteroge-
neous and anisotropic mechanical properties
[7]. These give rise to combined damage mech-
anisms (e.g. fibre pull-outs and matrix crack-
ing). Undoubtedly, this critical issue pushes
current analysis and design tools (Finite Ele-
ment Analysis - FEA tools and meshing algo-
rithms) to their limits.

In this work, the isotropic cohesive phase
field model introduced in [9] is used to simu-
late fracture of the concrete matrix. For brevity,
a uniaxial phase field formulation is also used to
account for damage in the embedded truss ele-
ments.

The remainder of this manuscript is organ-
ised as follows. In Section 2, the cohesive phase
field model is briefly presented. Next, the key
methodological components of our implemen-
tation are presented in Section 3 including the
VEM formulation and the embedded element
technique used to account for the fibres. Finally,
results from two numerical experiments are pre-
sented in Section 4 followed by our concluding
remarks.

2 Cohesive Phase Field Model

In the following, the case of the 2D de-
formable domain Ω shown in Fig. 1Top is con-
sidered. The domain is supported along the
boundary ∂ΩD and is subjected to body forces
b and tractions t̄ along the boundary ∂ΩN . Fur-
thermore, the domain Ω is cracked along the
surface Γ.

L

Figure 1: Deformable domain Ω containing: (top) a sharp
crack Γ and (bottom) a diffused crack, subjected to body
forces b and Dirichlet and Neumann boundary conditions
along ∂ΩD and ∂ΩN respectively.

2.1 Variational Formulation
Point of departure for the cohesive phase

field formulation, is Griffith’s variational pos-
tulate for Linear Elastic Fracture Mechanics
(LEFM) [1]. Within this setting, the potential
energy of a cracked solid is represented as the
sum of the elastic strain energy and the fracture
surface energy as shown in Eq. (1).

Π(u,Γ) =

∫
Ω

ψ(ε(u)) dΩ +

∫
Γ

Gc dΓ

−
∫
Ω

b · u dΩ−
∫
∂ΩN

t̄ · u d∂ΩN ,

(1)
where ψ is the elastic strain energy density, ε
is the linearized strain tensor, u is the displace-
ment vector at any arbitrary point in Ω and Gc is
the critical energy release rate. The linearized
strain tensor ε is defined as:

ε = ∇symu , (2)

where ∇sym = (∇ + ∇T )/2 is the symmetric
gradient operator.

In the variational phase field fracture theory,
the sharp crack path Γ is represented by a dif-
fused crack phase field, represented by a scalar
parameter ϕ ∈ [0, 1], where ϕ = 1 corresponds
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to a fully cracked state and ϕ = 0 to a fully in-
tact state of the material. Thus, the correspond-
ing fracture surface energy term from the right-
hand side (r.h.s.) of Eq. (1) is approximated by
a regularized volume term according to Eq. (3)∫

Γ

Gc dΓ ≈
∫
Ω

Gcγ(ϕ,∇ϕ) dΩ , (3)

where

γ(ϕ,∇ϕ) = 3

4L
[ϕ+

L2

4
∇ϕ · ∇ϕ] , (4)

is a linear fracture surface energy approxima-
tion function, based on [10]. In Eq. (3), L is the
length scale, which corresponds to the width of
the crack diffusion zone. Taking into account
Eqs. 1, 3 and 4, the total potential energy is ex-
pressed as:

Π(u, ϕ) =

∫
Ω

ψ(ε(u), ϕ) dΩ

+

∫
Ω

Gcγ(ϕ,∇ϕ) dΩ

−
∫
Ω

b · u dΩ−
∫
∂ΩN

t̄ · u d∂ΩN .

(5)
Note that ψ(ε(u), ϕ) is also a function of the
phase field and represents the degraded elastic
strain energy density, reflecting the reduction
in the solid’s stored elastic strain energy as the
crack propagates and the dissipated fracture en-
ergy increases.

2.2 Material Degradation
In this work, the strain energy density is

additively decomposed into active and passive
parts (see [11]), such that:

ψ(ε(u), ϕ) = ψa(ε(u), ϕ) + ψ−(ε(u)) , (6)

where only the term ψa contributes to fracture
and is therefore degraded by the phase field.
The active term may generally be written as:

ψa(ε(u), ϕ) = g(ϕ)ψ+(ε(u)) , (7)

where g(ϕ) is a function that quantifies the stiff-
ness reduction and is referred to as the degra-
dation function. The choice of this degradation

function governs the coupling between the dis-
placement and the phase field.

Several strategies for decomposing the strain
energy density have been established in the lit-
erature, with one of the most popular being the
so called ”Miehe” decomposition based on [12].
This approach considers a split of the elastic
strain energy into a tensile (active) and a com-
pressive (passive) part. This is accomplished
via a spectral decomposition of the strain ten-
sor as:

ε = ε+ + ε−

ε± = ⟨λi⟩±ni ⊗ ni ,
(8)

where the Macaulay brackets denote ⟨x⟩± =
(x ± |x|)/2, λi are the eigenvalues and ni the
eigenvectors of the strain tensor ε. Following
Eq. (8), the strain energy density components
are given by Eq. (9)

ψ± =
1

2
λL[⟨tr(ε)⟩±] + µLε

± : ε± , (9)

where λL,µL are the Lamé constants.
Following the work of [13], a quasi-

quadratic degradation function from Eq. (7) is
defined as:

g(ϕ) =
(1− ϕ)2

(1− ϕ)2 + 3
2
E Gc

σ2
c L
ϕ ḡ(ϕ)

, (10)

where ḡ(ϕ) = 1+ pϕeq
2ϕ2 , E is Young’s modu-

lus of elasticity, σc is the critical fracture stress
and p ≥ 1, q are two parameters controlling
shape of the softening stress strain curve. The
interest reader may refer to [8] for a discussion
on the calibration of these parameters. Geelen
et al. [9] further provide the following stability
threshold for the length scale

L ≤ 3

2(p+ 2)

E Gc

σ2
c

. (11)

2.3 Governing Equations
The governing equations of the problem can

be acquired by applying the principle of mini-
mum total potential energy ( [14] to the poten-
tial defined in Eq. (5), i.e.,

{u, ϕ} = Argmin{Π(u, ϕ)}. (12)
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Hence, for arbitrary admissible displacement
and phase field variations, δu and δϕ, respec-
tively, the first variation of the energy functional
must vanish:

δΠ(u, ϕ; δu, δϕ) = 0. (13)

To determine all configurations {u, ϕ} for
which the condition of Eq. (13) is met, one has
to determine the stationary points of the func-
tional of Eq. (5).

2.3.1 Displacement Field Sub-Problem

The Euler-Lagrange equation for the func-
tional of Eq. (5), with respect to (w.r.t.) the dis-
placement field is established as:

�
���

���∂ψ(ε(u), ϕ)

∂u
−∇ · ∂ψ(ε(u), ϕ)

∂(∇u)

− ∂(b · u)
∂u

−∇ ·
�
�
�
��∂(b · u)

∂(∇u)
= 0 .

(14)

Recalling Eq. (2), as well as that the Cauchy
stress tensor is given by:

σ =
∂ψ

∂ε
, (15)

and plugging Eq. (15) into Eq. (14) yields
the well-known momentum balance equation of
elastostatics:

∇ · σ + b = 0 , (16)

with the natural boundary condition:

σ · n = t̄ on ∂ΩN , (17)

where n is the vector normal to ∂ΩN .

2.3.2 Phase Field Sub-Problem

The Euler-Lagrange equation for the func-
tional of Eq. (5), w.r.t. the phase field (first and
second term of the r.h.s. of Eq. (5)) is written
as:

∂ψ(ε(u), ϕ)

∂ϕ
−∇ ·

�
���

���∂ψ(ε(u), ϕ)

∂(∇ϕ)

+ Gc
∂γ

∂ϕ
−∇ ·

(
Gc

∂γ

∂(∇ϕ)

)
= 0 .

(18)

Using Eqs. 4, 6, 7, we compute each term of
Eq. (18) individually:

c1 =
∂ψ(ε(u), ϕ)

∂ϕ

(6,7)
= g′(ϕ)ψ+ (ε(u))

c2 = Gc
∂γ

∂ϕ

(4)
= Gc

3

4L

c3 = Gc
∂γ

∂(∇ϕ)
(4)
= Gc

3

4L

L2

2
∇ϕ

⇒ ∇ · (c3) = Gc
3

4L

L2

2
∇ · ∇ϕ .

(19)

Substituting Eqs.19 in Eq. (18) yields the phase
field evolution equation in Eq. (20)

3

4L

(
1− L2

2
∇ · ∇ϕ

)
=

−g′(ϕ)ψ+

Gc

= Diso ,

(20)
subjected to the natural boundary and irre-
versibility conditions,

∇ϕ · n = 0

ϕ̇ ≥ 0 ,
(21)

respectively. The r.h.s. of Eq. (20) is termed
crack-driving force term. The system of cou-
pled equations 16 and 20, subjected to condi-
tions 17, 21 along with problem-specific Dirich-
let boundary conditions where displacement
value ū is prescribed, give rise to the following
strong form of the problem:

(S)



∇ · σ + b = 0

3

4L

(
1− L2

2
∇ · ∇ϕ

)
= Diso

σ · n = t̄ on ∂ΩN

u = ū on ∂ΩD

∇ϕ · n = 0 on ∂Ω

ϕ̇ ≥ 0.
(22)
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2.4 Irreversibility constraint
To enforce the necessary irreversibility con-

straint on the crack formation, i.e., Eq. (21)2,
an Augmented Lagrange Method is adopted.
The phase field governing equation, Eq. (22)2
is rewritten as:
3

4L

(
1− L2

2
∇ · ∇ϕ

)
− ⟨λ+ γ(ϕn−1 − ϕ)⟩+︸ ︷︷ ︸

AL1

− ⟨λ+ γ(1− ϕ)⟩−︸ ︷︷ ︸
AL2

= Diso ,

(23)
where λ are the Lagrange multipliers, γ is
a penalty parameter and ϕn−1 are the phase
field values obtained at time t = tn−1. In
Eq. (23), term AL1 imposes a penalty whenever
the phase field decreases between subsequent
time increments, whereas term AL2 penalizes
phase field values ϕ > 1. The Lagrange multi-
pliers are iteratively updated until convergence.

3 Solution Procedure
In this section, a first order Virual Element

Method (VEM) formulation to solve problem
(S) of Eq. (22) is briefly revisited. For an ex-
tensive review of the mathematical aspects of
the method as well as numerous engineering ap-
plications the reader is referred to [16] and [17].

3.1 Weak Form
Multiplying the strong form Eqs. 22 (while

accounting for the Augmented Lagrange form
of the phase field equation Eq. (23)) with the
test functions δu and δϕ and performing in-
tegration by parts leads to the following weak
form equilibrium equations:

Ru =

∫
Ω

σ · ∇δu dΩ−
∫
Ω

b · δudΩ

−
∫
∂ΩN

t̄ · ∇δud∂ΩN ≈ 0

Rϕ =

∫
Ω

Dδϕ dΩ

+

∫
Ω

3

4L

[
δϕ+

L2

2
∇δϕ · ∇ϕ

]
dΩ

−
∫
Ω

(AL1 + AL2) δϕ dΩ ≈ 0 ,

(24)

where terms AL1 and AL2 are defined in
Eq. (23). Equilibrium demands that the set
residuals from Eq. (24) be zero. The solution
to the weak form Eq. (24) can be obtained by
either monolithic or staggered schemes. In this
work, a one-pass staggered scheme from [19]
is incorporated, where the residuals Ru and Rϕ

are alternatively minimized.

3.2 Linear VEM Formulation
In this section, the implemented VEM for-

mulation will be briefly presented. Several
mathematical aspects are omitted for the sake
of simplicity. The reader is referred to [17, 18,
20, 21] for details.

A spatial discretization T (Ω) of the domain
of interest Ω is performed, Fig. 2. Point of
departure from classical finite element meth-
ods, is that the initial domain, Ω, is partitioned
into non-overlapping elements Ωe, of arbitrary
polygonal topology, with a boundary ∂Ωe con-
sisting of nE straight edges Ei, i ∈ [1, nE].
The elements need not be convex. In this work,
a first order VEM is formulated, where vir-
tual elements only have nodes at the vertices ,
Fig. 2. Higher order VEM technologies also ex-
ist, where edge as well as domain interior nodes
are defined [17].

𝑥𝑐

𝐸1

𝐸2

𝐸3

𝐸4

𝐸6

𝐸5

𝑉4

𝑉3

𝑉2𝑉1

𝑉6

𝑉5 𝐧𝐸
𝐿𝐸

𝑉𝑗

𝑉𝑘

Figure 2: Top: Polygonal discretization T (Ω). Bottom:
Linear hexagon virtual element.
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A key point of the VEM is the additive de-
composition of the solution approximations into
a projected (polynomial) and a remainder (non-
polynomial) part. For the sake of compactness
and clarity in the presentation of the formu-
lation, a concise formalism is adopted closely
following [17, 20, 21]. The problem is charac-
terized by two primary field variables, namely
the displacement and the phase field. The pri-
mary field approximations are noted as Ph =
{uh, ϕh}. Each primary field is split as:

Ph = Pπ + (Ph −Pπ) , (25)

where Pπ is a projection of the primary fields
onto a polynomial space; in this case P1. From
the definition of appropriate VEM function
spaces the primary field ansatz values as well
as their gradients cannot be obtained explicitly
(see [18]). To tackle this, the presented 2D
linear VEM approximates this projection with
a linear function w.r.t. the spatial coordinates
x, y. This approximation can be written in ma-
trix form as:

Pπ =


uπ x

uπ y

ϕπ

 = A ·Nπ

=

a1 a4 a7
a2 a5 a8
a3 a6 a9


1
x
y

 ,

(26)

where uπ x, uπ y are the components of the pro-
jected part of displacement field in 2D, ϕπ is
the projected part of the phase field variable, ai,
i = 1 : 9, are coefficients of the linear approx-
imation to be determined and Nπ is the linear
approximation function. The unknown coeffi-
cients ai are computed by employing two con-
ditions. First, one postulates that the primary
field ansatz gradients and their corresponding
projected parts are orthogonal, i.e.,∫

Ωe

∇Nπ · (∇Ph −∇Pπ) dΩe , (27)

where ∇Nπ is used as a Galerkin weighting
function.

Second, the element mean field value of the
ansätze and their projection parts are equal, i.e.,∫

Ωe

Ph dΩe =

∫
Ωe

Pπ dΩe

⇒
nV∑
V=1

Ph(xV , yV ) =

nV∑
V=1

Pπ(xV , yV ), (28)

where nV is the number of vertices of the vir-
tual element and (xV , yV ) are the coordinates
of each vertex. Eq. (28) holds because of the
linear order of the VEM formulation. Further-
more, since the polynomial projection function
is of 1st order, the gradient ∇Nπ = const ⇒
∇Pπ = const. Following this, and further ex-
panding Eq. (27) yields:

���∇Nπ

∫
Ωe

∇Ph dΩe =���∇Nπ∇PπΩe ⇒

∇Pπ =
1

Ωe

∫
Ωe

∇Ph dΩe .

(29)

Using the Gauss theorem for the integral of the
r.h.s. of Eq. (29) the following boundary term
is obtained:

∇Pπ =
1

Ωe

∫
∂Ωe

Ph ⊗ nE d∂Ωe , (30)

where nE is the vector normal to the element
boundary. Recalling the fact that the element
boundary comprises ne straight edges, the flux
term from the r.h.s of Eq. (30) is computed
over each segment by employing linear 1D fi-
nite element shape functions. With reference
to Fig. 2Bottom, the primary field ansatz values
along an edge Ei are expressed as:

Ph|Ei
=(1− ξ)Ph(xVj

, yVj
)

+ ξPh(xVk
, yVk

) ,
(31)

with Vj, Vk being the start and end nodes of
the segment in a counter-clockwise manner and
ξ = xE/LE , the normalized longitudinal local
coordinate of edge Ei Hence, after some alge-
braic manipulations [17], coefficients ai, i = 4 :
9 can be analytically expressed as a function of
the element nodal degrees of freedom (DOFs)
according to a relation of the form of Eq. (32):

Aj: j=4:9 = D∇P(xV , yV ) , (32)
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where D∇ is an analytically defined (for lin-
ear VEM) operator, mapping the primary field
projected value gradients to the primary field
nodal DOFs. Next, the remaining 3 coefficients
ai, i = 1 : 3 can be obtained from the condition
in Eq. (28) as

Aj: j=1:3 =

nV∑
V=1

[
P(xV , yV )−∇Pπ

{
xV yV

}]
.

(33)
Eqs.32, 33 completely define the virtual ele-
ment projection is terms of the nodal primary
field ansatz values.

3.3 Virtual Element State Matrices
Having defined the decomposition of the pri-

mary fields Eq. (25), it follows that the total po-
tential energy expression Eq. (5) also assumes a
similar form:

Π(Ph) = Πc(Pπ) + Πstab(Ph −Pπ) , (34)

where Πc(Pπ) is called the consistency part and
Πstab(Ph −Pπ) the stabilization part. The sta-
bilization part is necessary since elements with
more than 3 vertices based only on the projec-
tion part of the primary fields, are rank defi-
cient [18]. Neglecting body and traction forces,
the consistency part can be computed for each
element by:

Πc(Pπ) =

∫
Ω

ψ(Pπ)|xc dΩ

+

∫
Ω

Gcγ(Pπ)|xc) dΩ ,

(35)

where □|xc denotes a quantity that is evaluated
at the centroid of the element. It is evident that
the residuals of the weak form Eq. (24) can also
be written as the sum of a consistency and a sta-
bilization part.

Ru = Ru c +Ru stab

Rϕ = Rϕ c +Rϕ stab .
(36)

And in a well known manner the element con-
sistency stiffness matrices, for the displacement
and the phase field sub-problems, are given as:[

Ku c =
∂Ru c

∂uπ
Kϕ c =

∂Rϕ c

∂ϕπ

]
. (37)

With the polynomial part of the solution ap-
proximation handled, the non-polynomial (or
stabilization) part remains to be defined. Ac-
cording to [22], an energy stabilization strategy
is adopted, where the stabilization term of the
potential is expressed as:

Πstab(Ph −Pπ) = Π̂(Ph)− Π̂(Pπ) , (38)

where Π̂ = βΠc is chosen as a scaled consis-
tency potential energy functional. This choice
renders the stabilization part computable, how-
ever not via the VEM ansatz. To this end, each
element polygonal topology, see Fig. 2Bottom, is
internally triangulated (there exist many ways
to do that [23]) and then regular linear triangu-
lar finite elements are employed (see [24]) to
compute the element stabilization energy. The
work from [20] proposed values for the scaling
parameter β ∈ (0, 1]. Thus the stability part
stiffness matrices for the two sub-problems are
computed as:[

Ku s =
∂Ru s

∂u
Kϕ s =

∂Rϕ s

∂ϕ

]
. (39)

3.4 Embedded Element Method
In the current work, to account for the fibre

reinforcement of the specimens, an embedded
element technique is adopted. To this end, the
problem domain is defined and discretized with
virtual elements. Next, separate 1D line seg-
ments are defined within the domain accord-
ing to the chosen reinforcement pattern (con-
centric/isotropic [26]). These line segments are
not defined in a conforming way to the already
computed virtual element mesh, Fig. 3Top. Then
a loop over the discretized domain is performed,
where every continuum element is checked for
intersection with the line segments. If an inter-
section exists, an embedded element is defined
within the host continuum element. The em-
bedded element nodes are defined on the inter-
sections of the boundary with the reinforcement
lines. To ensure the interaction between em-
bedded and host elements, a displacement con-
straint is defined between the generated nodes
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and the host element nodes that are on the inter-
secting boundary edge (see Fig. 3Bottom).

The local stiffness of an embedded truss el-
ement, considering longitudinal and transverse
displacement nodal DOFs, is

KTe =


k 0 −k 0
0 0 0 0
−k 0 k 0
0 0 0 0

 , (40)

where k = ETeATe/LTe is the axial rigidity of
the truss element, ETe is the modulus of elas-
ticity of the reinforcement material, ATe is the
cross-sectional area of the reinforcement and
LTe is the length of the embedded element.

The contribution of the embedded element
stiffness to the stiffness of the ”composite el-
ement” (host & embedded) is computed by:

KΩe
u = KΩe

u +TT
embK̄TeTemb , (41)

where KΩe
u is the host virtual element displace-

ment stiffness matrix, K̄Te = TΛ
TKTeTΛ is

the embedded element global stiffness matrix
and TΛ is the element transformation matrix
[27].

In Eq. (41), Temb is a matrix that maps the
embedded element nodal DOFs to their corre-
sponding ones at the host element nodes. The
dimensions of this matrix depend on the num-
ber of vertices, nV , of the host element. Its en-
tries are computed based on the position of the
embedded element node, on the corresponding
host element boundary edges.

𝑉4

𝑉3

𝑉2𝑉1

𝑉6

𝑉5

Α

Β

𝑉4

𝑉3

𝑉2𝑉1

𝑉6

𝑉5

Figure 3: Top: Reinforcement line overlapping with dis-
cretization T (Ω). Bottom: Embedded truss element def-
inition.

1.6 mm

0.5 mm

1
0
0
m
m

100mm

50mm

𝐸𝑓 = 54GPa

𝐴𝑓 = 0.0394mm
2

𝐺𝑐,𝑓 = 60N/mm

𝜎𝑐,𝑓 = 800MPa

𝐸𝑚 = 1.4 GPa

𝜈𝑚 = 0.3

𝐺𝑐,𝑚 = 30N/mm

𝜎𝑐,𝑚 = 37MPa

= 2.50mm

Figure 4: SEN-T: Problem setup.

4 Numerical Experiments
Two applications are presented using the for-

mulation presented in this work. All analyses
are performed using an in-house code and have
been run on a PC fitted with an Intel i9 proces-
sor with 24 cores and 128GB of RAM.
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4.1 Single-Edge Notched Specimen under
Tension (SEN-T)

A single-edge notched (SEN) 3D printed
CCFRP composite specimen is examined. The
problem geometry, boundary conditions and re-
inforcement configuration (in blue) are shown
in Fig. 4. Two concentric fibres are defined
along the boundary, with a spacing of 1.6 mm.
This configuration is termed ”CF2”. To assess
the effect of the reinforcement, a matrix-only
model is also considered, termed ”CF0”. The
specimen thickness is 1 mm. The mechanical
properties are selected to emulate the properties
of a nylon based matrix material called ”Onyx”
and a continuous carbon fibre filament from
Markforged [28]. Values for Young’s mod-
uli, Poisson’s ratios and energy release rates
are based on [29], whereas the critical fracture
stress values are obtained from the manufac-
turer datasheets [28]. The equivalent area of the
fibre is computed as:

Af = AfilV
frac
fil , (42)

where Afil is the area of the continuous fibre
filament and V frac

fil is the filament fibre volume
fraction. Following information provided by the
manufacturer, the fibre filament diameter is set
to 0.38 mm. The filament fibre volume frac-
tion is chosen equal to 35%; numerous works
existing in the literature investigate such prop-
erties, [30,31]. A displacement equal to 2.5 mm
is incrementally imposed on the top edge of the
specimen, with an increment ∆u = 0.0015 mm.
The domain is discretized with 14793 quadrilat-
eral first-order virtual elements and the length
scale value is chosen equal to L = 1.4 mm.

Fig. 6 contains the load-displacement curves
for configurations CF0 and CF2. The reinforced
model is also solved via regular FEM for val-
idation purposes. The inclusion of concentric
fibre reinforcement has a negligible effect on
the elastic stiffness. However, it results in an
8.3% increase in the ultimate load. Phase field
contours for both matrix-only (left column) and
reinforced (right column) configurations are il-
lustrated in Fig. 5. Snapshots for three top edge
displacement values are displayed in the three

plot rows. It can be observed that, for the CF2
layout, the crack gets arrested on each fibre, re-
sulting in higher strength. This is anticipated
as the fibre-strength and toughness are much
higher than the corresponding matrix material
properties.

Figure 5: SEN-T: Phase field contour plots for different
top edge displacements. Top: 1.8 mm, Middle: 2.0 mm,
Bottom: 2.5 mm.

Figure 6: SEN-T: Load-Displacement curve.
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4.2 Single-Edge V-Notch Specimen under
Tension (SEVN-T)

In this example a single-edge V-notched
specimen is considered.

100mm

60°

1
2
.7
m
m

5
.1
m
m

0.1 mm

SF3

0.9 mm

ISO

• 𝐸𝑚 = 14.2 GPa
• 𝜈𝑚 = 0.35
• 𝐺𝑐,𝑚 = 0.344N/mm
• 𝜎𝑐,𝑚 = 3.56MPa

• 𝐴𝑓 = 0.0177mm
2

• 𝐸𝑓 = 200GPa

• 𝐺𝑐,𝑓 = 0.5 N/mm
• 𝜎𝑐,𝑓 = 300MPa

Figure 7: SEVN-T: Problem setup.

The problem geometry, boundary condi-
tions and reinforcement scenarios are shown in
Fig. 7. The first scenario, termed ”ISO”, con-
siders isotropic fibre deposition along the load-
ing direction. The second configuration, termed
”SF3”, considers 3 fibres around the V-notch
and isotropic reinforcement for the rest of the
domain. The specimen thickness is set to 3 mm.
The selected mechanical and fracture proper-
ties are intended to reflect those of a layer of
3D printed concrete and reinforcing steel fibres.
The specimen is subjected to tension by incre-
mentally imposing a displacement equal to 0.05
mm on the right edge, while fixing the left. The
increment is set to ∆u = 0.00005 mm and the
length scale to L = 0.3 mm. The domain is
discretized with 36122 virtual elements.

Fig. 8 illustrates the response curves for the
two configurations. Although the isotropic fibre
layout achieves a 7% higher ultimate load, the
SF3 configuration achieves a more ductile re-
sponse. Fig. 9 contains the phase field contour
plots for three values of the imposed displace-
ment, namely 0.02 mm (top), 0.03 mm (mid-
dle) and 0.05 mm (bottom). The isotropic lay-
out results in an anticipated crack pattern, i.e.,
the crack propagates along the axis of symme-
try. However, the SF3 configuration induces
anisotropic behavior. The points where the fi-

bres are tesselated result in stress concentra-
tions that enforces the crack propagate towards
them, deviating from a straight path. Simalar to
the previous case, the crack is arrested on each
fibre.

Figure 8: SEVN-T: Load-Displacement curve.

Figure 9: SEVN-T: Phase field contour plots for differ-
ent top edge displacements. Top: 0.02 mm, Middle: 0.03
mm, Bottom: 0.05 mm.

5 Conclusions
In this work a cohesive fracture phase field

model is incorporated with the Virtual Element
Method to simulate continuous fibre reinforced
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composite specimens. The fibres are modeled
using an embedded element technique. This of-
fers an advantage, in terms of simplicity, over
traditional homogenization techniques, as there
is no need to calculate equivalent orthotropic
properties for the reinforced specimens. The
numerical benchmarks demonstrate the effec-
tiveness of the proposed framework in accu-
rately capturing fracture evolution in reinforced
domains. Both ultimate strength increase as
well as fibre-induced anisotropy were captured.
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