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Abstract. Cohesive fracture models are an established tool for the prediction of fracture in concrete.
However, the reliable estimation of fracture parameters, specifically traction separation laws, is a
necessary step towards their successful application. Currently, fracture parameter estimation is mainly
performed by fitting simple analytical models to experimental results. This requires the design and
execution of dedicated experiments, for which analytical models are available.

Numerical models, along with optimisation and inverse problem solution techniques have the po-
tential to lift the limitations inherent in the above process, allowing for instance the estimation of
fracture parameters from more general experiments, involving complex geometries and loading con-
ditions. However, fracture is computationally demanding process to simulate, while the solution of
inverse problems requires multiple model evaluations, which can render whole process infeasible.

This work explores the application of a simple technique for accelerating fracture simulations to
the identification of fracture parameters of concrete. The technique relies on statically condensing
parts of the model that are not affected by fracture, thus substantially reducing the model size, while
preserving the accuracy and generality of the original model. Furthermore, it can be combined with
different discretisation schemes such as standard or extended finite elements (FEM/XFEM), allowing
for increased flexibility. The accelerated models are combined with Bayesian optimisation, allowing
to solve the inverse problem in a highly efficient way. The effectiveness of the proposed approach is
demonstrated through physical and numerical experiments.

1 INTRODUCTION

Fracture modelling plays an important role
in understanding and predicting the failure of
materials and structural components. Espe-
cially for the case of composite materials such
as concrete, cohesive zone modelling (CZM)
as employed by Hillerborg et al. [1], combined
with the finite element method (FEM) has been
established as a robust methodology for captur-
ing the complex process of fracture propagation
especially if the crack path is known apriori [2].
Note that if that is not the case, the extended

Finite Element Method (XFEM) could be em-
ployed for accurate representation and predic-
tion of the crack propagation path [3,4]. Yet, the
accurate estimation of fracture parameters, par-
ticularly the traction-separation laws that gov-
ern these models, remains a challenge. Cur-
rent practices often rely on fitting simple ana-
lytical models to data from carefully designed
experiments, which limits their applicability to
scenarios with simpler geometries and loading
conditions [5]. Therefore, for more compli-
cated geometries, loading, and boundary con-
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ditions, a new experimental testing setup might
be required. Some more general examples of
traction-separation estimation schemes include
probabilistic approaches such as the bayesian
framework with markov chain Monte-Carlo in-
tegration [6], but this method is noted as hav-
ing high computational cost. Parameters could
also be identified using direct approaches and
these are usually gradient based optimization
methods such as, direct inverse method which
includes the genetic algorithms (GA) and de-
sign of engineering (DoE) parametric studies
[7–9].In this work, an acceleration scheme for
fracture simulations is proposed, which com-
bined with Bayesian Optimization can be used
to efficiently solve inverse problems, towards
the identification of CZM parameters. Since
the solution of the nonlinear FEM, necessary
for fracture simulations, can be computationally
expensive (especially with 3D models which re-
sult in large numbers of unknowns), model or-
der reduction (MOR) methods are often em-
ployed to cut down on the expense. MOR tech-
niques rely on building models of reduced di-
mensionality (reduced order models), which, in
an inverse setting, can be used as surrogates
for the full-order model. Thus, reduced order
models must require significantly less compu-
tational effort whilst not compromising the ac-
curacy of the solution [10]. A popular approach
for the construction of such reduced models re-
lies on projecting the equilibrium equations of
the full-order model into subspaces of reduced
dimensions. The generation of bases for these
subspaces usually affects both the accuracy of
the resulting model and the reduction in the
number of degrees of freedom (DOF) required.
A common approach for the construction of
such bases is the proper orthogonal decomposi-
tion (POD) [11], which has also been applied to
fracture problems [12–14]. However, direct ap-
plication of POD to problems where the param-
eters describe the location of cracks or discon-
tinuities can result in highly inaccurate modes.
Since the discontinuities in the computed snap-
shots lie at different locations, the modes, as lin-
ear combinations of the snapshot solutions, es-

sentially include several discontinuities. Based
on existing literature, several approaches have
been identified to address this challenge.

One approach decomposes the solution into
global and local components. Here, the modes
of the undamaged structure represent the global
behaviour, while the local effects of the crack
are captured by either retaining the full model
near the crack [15] or enriching the reduced ba-
sis with crack-specific modes [16]. This method
offers flexibility for adapting Reduced Order
Models (ROMs) to different crack locations, but
it is limited to cases where cracks do not signif-
icantly alter the global modes.

Another method, mesh morphing, modifies
a Full Order Model (FOM) built for a spe-
cific crack configuration to accommodate sim-
ilar cracks. This involves adjusting node posi-
tions in the mesh while preserving element con-
nectivity [12, 14, 17]. The applications include
static cracks [18] and propagating cracks [12].
However, large geometric changes can cause
excessive distortion, leading to inaccuracies or
failure.

Mapping the modes offers an alternative by
using a fixed mesh and transforming snapshots
and modes to a reference configuration. Snap-
shots are mapped to a reference geometry, and
the reduced subspace is computed there be-
fore being transferred to target configurations
[19]. While this avoids mesh distortions, accu-
rate mappings and interpolations are required,
which can be challenging for complex crack ge-
ometries.

Interpolation based methods construct
ROMs by interpolating reduced system matri-
ces. They could be used both in low dimen-
sional basis [20] or reduced system matrices
level [21]. While effective for linear problems,
they can become computationally prohibitive
for complex crack geometries requiring numer-
ous parameters. Additionally, interpolating re-
duced bases often fails to capture discontinu-
ities accurately.

An approach that has been successfully em-
ployed for nonlinear problems consists of adap-
tively updating an initial basis using solutions
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of the full model [10, 22]. While this approach
can effectively capture the discontinuities intro-
duced by cracks, as well as their progressive
evolution, it requires frequent solutions of the
full model in the online phase, which limit its
computational efficiency.

This work employs a novel approach that
constructs a reduced order basis capable of
recovering the exact FOM solution. This is
achieved by pre-computing selected columns of
the stiffness matrix inverse, focusing on degrees
of freedom affected by damage [23]. The re-
sulting basis retains only damage-related DOFs,
effectively condensing unaffected ones. This
method enables rapid forward problem solu-
tions, essential for optimization-driven inverse
problems requiring repeated evaluations.

The remainder of the paper is structured as
follows: in section 2 the proposed approach
is presented in detail, including the finite ele-
ment and cohesive zone formulations in subsec-
tion 2.1, the experimental data used and the cor-
responding experimental setup in subsection 2.4
and the inverse problem formulation subsec-
tion 2.5 used. In section 3, the efficiency of both
the proposed approach in a forward and inverse
setting are demonstrated through the simulation
of an experiment involving plain concrete and
the identification of the corresponding fracture
parameters. Finally, in section 4, the most im-
portant results are summarised and conclusions
are drawn.

2 METHODOLOGY
This paper aims to automate and acceler-

ate the process of identification of fracture pa-
rameters required for cohesive zone modelling.
This identification process is herein treated as
an inverse problem, where fracture parameters
are obtained by minimising the discrepancies
between experimentally measured load deflec-
tion curves and numerical predictions. These
predictions are obtained by solving a so called
forward problem, which in the present case is
discretised using finite elements, while a CZM
is employed to model fracture. Since this ap-
proach requires repeated evaluations of a non-

linear problem, which can easily become pro-
hibitive in terms of computation, an MOR tech-
nique is further employed to accelerate the so-
lution of the forward problem.

2.1 Nonlinear Finite Element Analysis

Figure 1: Cracked Domain, Ω

In the general case, the forward problem
consists of a cracked three-dimensional body,
as illustrated in Figure 1, with Ω representing
the problem domain and Γ the boundaries of
the domain, consisting of Γu where displace-
ments imposed, Γt where surface tractions (t̄)
are applied and Γ0 where free surface condi-
tions apply. Furthermore, at the crack surface
Γc, cohesive forces are applied along the nor-
mal to the crack surface, denoted by vector n.
While, in general, cohesive forces can also be
applied along the tangent direction, the exper-
imental results considered herein only involve
mode I fracture, therefore the exposition is lim-
ited to the case of normal forces.

Assuming linear elastic material behaviour
for the whole domain, apart from the interface,
the weak form for the above problem is formu-
lated as:

∫
Ω

ϵ(δu) : Cϵ(u) dΩ +

∫
Γc

δu · tc dΓc =∫
Γt

δu · t̄ dΓ
(1)
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where u is the displacement vector, ϵ is the
strain tensor, C is the constitutive matrix, t̄ is
the prescribed traction on the boundary Γt, and
At part of the crack surface Γc cohesive forces tc
are applied in the direction normal to the crack
surface, defined by vector n. Also, δ is the vari-
ation operator, while strains are obtained as the
symmetric gradient of the displacements:

ϵ (u) = ∇su =
1

2

(
∇u+∇uT

)
(2)

2.2 Cohesive Zone Modelling
Branblatt [24] formulated the linear CZM as

an alternative to fracture mechanics in brittle
materials and Dugdale [25] extended the con-
cept for plastic materials. Later the trilinear co-
hesive law was introduced to deal with describ-
ing the behaviour of polymeric materials with
reinforcing fibres [26].

The trilinear cohesive zone model has been
found to provide greater accuracy compared to
the widely used linear (or bilinear) cohesive
zone model [27]. Both models share a com-
mon feature: a hardening phase where fracture
separation and cohesive stress exhibit a linear
relationship. Once the maximum stress (Tmax

n )
is reached, the behaviour transitions to a soft-
ening phase. The primary distinction lies in
the softening behaviour: the trilinear model in-
corporates two distinct softening phases. The
first phase follows an initial softening slope
(K1n) up to the bridging stress (T fb

n ). Beyond
this point, the response transitions to the sec-
ond softening phase, characterized by a differ-
ent slope (K2n), which continues until the max-
imum separation is reached. Advancing from
this stage the cohesive elements lose all resis-
tance to displacement.

The cohesive laws essentially stores infor-
mation at the crack tip and at the crack tip,
δn is the displacement where the resistance of
the cohesive zone (cohesive stress) will increase
until δn reaches δ∗n after which the cohesive
stress will decrease according to the cohesive
law used [28]. The trilinear CZM traction-
separation curve used for the simulations in this
paper has been shown in Figure 2.

Figure 2: Trilinear Cohesive Law

The damage accumulates over time with
the cohesive stress following the traction-
separation curves shown above. The equation
for the cohesive stress can be written as follows,
Equation 3 for the trilinear CZM [29]:

Tn =


Kδn if δn < δ∗n
Tmax
n +

(Tfb−Tmax
n )

(δfb−δ∗n)
(δn − δ∗n) if δ∗n < δn < δfb

Tfb − Tfb

(δcn−δfb)
(δn − δfb) if δfb < δn < δcn

0 if δn > δcn
(3)

2.3 Model Order Reduction
After discretisation, the weak form of Equa-

tion 1 yields the nonlinear equilibrium equa-
tion:

R (u) = Fext − Fint(u) = 0 (4)

where R ∈ Rn is the residual vector, Fext ∈ Rn

is the vector of external forces, Fint ∈ Rn is the
vector of internal forces, u ∈ Rn is the vector
of nodal displacements, and n is the number of
degrees of freedom of the model.

For the solution of Equation 4 the Newton
method is typically employed, which results in
the iterative solution of linear equations of the
form:

Kt(ui)∆u = −R(ui) (5)

where i is the iteration index, Kt ∈ Rn×n is the
tangent stiffness matrix, defined as the gradient
of the residual, and ∆u ∈ Rn is the displace-
ment increment.
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The solution of Equation 5, represents the
bulk of the computational effort required for the
solution of a nonlinear solid mechanics prob-
lem, therefore reducing its dimensions typi-
cally translates to direct computational gains.
In projection-based MOR, this reduction is
achieved by assuming that the solution lies in
a low-dimensional subspace of Rn. Then, as-
suming that a basis of this subspace is known,
displacements can be approximated as:

u ≈ Vy (6)

where V ∈ Rn×d is the reduced basis, d << n
is the size of the reduced space, and y ∈ Rn is a
vector of coordinates in the reduced space. Sub-
stituting Equation 6 into the nonlinear equilib-
rium equation and pre-multiplying by VT , thus
performing a Galerkin projection, yields the re-
duced nonliner equilibrium equation:

VTKt(Vyi)V∆y = −VTR(Vyi) (7)

which can be re-written as:

K̄t(yi)∆y = −R̄(yi) (8)

where, K̄t ∈ Rd×d is the reduced tangent stiff-
ness matrix and R̄t ∈ Rd is the reduced resid-
ual.

Since d << n, the solution of Equation 8
can be performed at a fraction of that of Equa-
tion 4. For general nonlinear solid mechanics
problems, effective reduced bases can be ob-
tained by means of the POD [11]. For fracture
problems, construction of the reduced bases in
a similar way is challenging and adaptive ap-
proaches, are usually preferred . However,
adaptive methods require frequent solutions of
the Equation 4, based on which the reduced ba-
sis is updated.

2.3.1 Proposed Approach

To overcome the challenges mentioned
above, an alternative approach is proposed
herein, based on the method introduced for lin-
ear problems in Agathos et al. [23]. As a start-
ing point, the tangent stiffness matrix of a solid

undergoing damage is considered, which can be
decomposed as:

Kt = K0 +∆K = K0 +PT∆KlP (9)

where, K0 ∈ Rn×n is the initial stiffness matrix
of the solid, prior to the occurrence of damage,
∆Kl ∈ Rd×d is a local modification on the stiff-
ness matrix for DOFs with damage, P ∈ Rn×d

is a boolean selection matrix, mapping the set
of DOFs affected by damage to the set of all
DOFs, and d is the number of DOFs affected by
damage.

Similarly, the residual can be decomposed
as:

R (u) = Fext − Fint(u) (10)

= Fext −K0u−PT∆Fl (u)

where ∆Rl ∈ Rn is a local modification of the
internal forces due to damage. It should be no-
ticed that, for the remainder of the system, the
internal forces remain linear.

Substituting Equation 9 into Equation 5 and
solving for the displacement vector yields:

∆u = K−1
t R (ui) (11)

= (K0 +PT∆KlP)−1R (ui) .

Using Sherman-Morrison formula to expand
the inverse and re-arranging the equation yields:

∆u = K−1
0 R−K−1

0 PTA (12)

where:

A = ∆Kl(I+PK−1
0 PT∆Kl)PK−1

0 R (13)

Substituting Equation 10 into the first term
of Equation 12, yields:

K−1
0 R (ui) = K−1

0 Fext − ui (14)

−K−1
0 PT∆Fl (ui) .

Substituting the above into Equation 12, the
following is obtained:

∆u = K−1
0 Fext − ui (15)

−K−1
0 PT (A+∆Fl (ui))
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In the above, it can be observed that the solution
at each iteration is the sum of the linear solution
due to the external load (K−1

0 Fext), the solution
at the previous iteration, and a linear combina-
tion of the columns of K−1

0 PT . Applying the
expression recursively, the solution at all previ-
ous increments can also be written as a sum of
K−1

0 Fext and a linear combination of columns
of K−1

0 PT . Considering the above, a basis con-
taining the linear solution and the columns of
K−1

0 PT should be able to exactly represent the
solution at each increment:

V = [K−1
0 Fext K−1

0 PT ] (16)

The use of such a basis requires the com-
putation of a subset of columns of the inverse
of the stiffness matrix. In the present case,
where damage occurs along a predefined inter-
face, these columns are known a-priori, there-
fore the can be pre-computed offline. Further-
more, since the interface fails progressively,
columns of the inverse of the stiffness matrix
can be added to the basis adaptively to min-
imise the size of the reduced model at the early
stages of damage. Herein, the crack opening
displacement is used as a criterion to activate
these columns. More specifically, when the
crack opening displacement at a node exceeds
a certain percentage of δ∗n, the corresponding
column of the inverse of the stiffness matrix is
added to the basis. Finally, the reduced stiffness
matrix and residual can be evaluated effectively
by exploiting the fact that the reduced basis con-
sists of columns of the inverse of the stiffness
matrix, as also shown in Agathos et al. [23].

2.4 Experimental Setup
The solution of the inverse problem relies

on the existence of a proper experimental setup
which can be digitally reproduced. The ex-
perimental results referred here were obtained
by Harmanci et al. [5], where the SENB test-
ing setup with a concrete mixture developed ac-
cording to EN 206-1 [30]. The load is applied
by a testing machine (Walter + Bai) which was
controlled via a clip gauge (HBM) to ensure
closed-loop crack mouth opening (CMOD). A

crack opening rate of 0.005 mm/s is applied in
the three-point bending test. The opening is
measured via a CMOD sensor and a 2D-DIC
(Digital Image Correlation) system. The spec-
imen dimensions and testing setup is presented
in Figure 3.

Figure 3: a) Front and b) Cross-sectional View of Spec-
imens and c) Test Setup taken from Harmanci et al. [5].
All dimensions are in mm.

2.5 Inverse Analysis
The inverse analysis will be used for iden-

tification of material parameters related to the
fracture propagation. The trilinear CZM (Fig-
ure 2) requires four parameters: cohesive zone
yield stress (Tmax

n ), energy release rate (GC),
bridging stress (T fb

n ) and stiffness of softening
branch 1 (K1). Notice, the initial stiffness or
slope of the linear branch (K0) is kept constant
throughout the optimization procedure. The
remaining parameters are dependent on afore-
mentioned ones and can be obtained from the
traction-separation curves. The cost function to
be minimized has the form:

RMS =

√∑n
i=1 (wi(F

exp
i − F num

i )
2
)∑n

i=1 (wi(F
exp
i )

2
)

(17)

where F exp
i and F num

i are the experimental
and numerical forces at n selected values of
the crack opening displacement and can be
obtained from the corresponding load deflec-
tion curves. The additional parameters wi are
weights used to enforce a closer match for the
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peak load values. In particular, these weights
are defined as:

wi = F exp
i (18)

placing a higher weight on higher force values.

2.5.1 Optimization Constraints

Additional relations between the model pa-
rameters are embedded in the optimization via
constraints to avoid infeasible solutions.

For the case of trilinear cohesive law, the pa-
rameters are: [Tmax

n , T fb
n , GC, K1]. Where the

bridging displacement is calculated as:

δfb =
Tmax
n − T fb

n

K1n

+ δ∗n, (19)

and the final separation displacement is:

δcn =
2GC − (δfb · Tmax

n ) + (δ∗n · T fb
n )

T fb
n

. (20)

The following constraints are imposed: [δfb >
δ∗n, δc

n > δfb, The fracture energy until the
bridging zone is reached is Gt

c, derived from
the area under the trilinear traction-separation
curve until the end of first softening branch, sat-
isfies: Gt

c < GC]

2.5.2 Bayesian Optimization

Bayesian optimization (BayesOpt) is a ma-
chine learning-based optimization technique
designed for objective functions that are ex-
pensive to evaluate, often requiring minutes to
hours per evaluation, and are treated as black-
box functions [31]. While alternative meth-
ods exist for optimizing expensive, derivative-
free black-box functions—commonly referred
to as ”surrogate methods” due to their use
of surrogate models to approximate the ob-
jective function—BayesOpt uniquely employs
Bayesian statistics to strategically determine
where to evaluate the objective function

The process starts with the construction of
the surrogate model of the objective function
where it is typically modelled with Gaussian

process (GP) regression. Throughout GP re-
gression, a mean vector is constructed and the
uncertainty is quantified through a variance
term (covariance matrix) [32]. The GP regres-
sion is used to determine the mean estimate
of the function and uncertainty quantification.
The optimization proceeds with an acquisition
function, such as Expected Improvement (EI),
which identifies new sampling points by ex-
ploring high uncertainty regions while balanc-
ing with exploitation of areas likely to yield im-
proved solutions. At each iteration, the objec-
tive function is evaluated at the location maxi-
mizing the acquisition function, and the surro-
gate model is updated with the new data. The
iterative process is continued until an accept-
able solution is found or the iteration limit is
reached.

3 Results and Discussion
3.1 Modelling

The numerical model of the concrete speci-
men employed herein is illustrated in Figure 3.
For this purpose, an exact geometric model has
been created in the digital domain and meshed
with linear hexahedrons. The resulting mesh
has 24,960 elements with 27,104 nodes. The
boundary conditions (BCs) and the load have
been applied with respect to its real world coun-
terpart, note the mesh around the fracture zone
has been refined specifically for this applica-
tion.

The final model, along with BCs and loading
(part a), mesh on the thickness direction (part b)
and the resulting crack mouth opening after 18
loading steps (part c) are illustrated in Figure 4.

Figure 4: a)Resulting Mesh with Applied BC’s and Load-
ing, b) Mesh in the Thickness Direction, c) Crack Open-
ing after 18th step (x140 Scale).
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3.2 Solver Acceleration

The material properties for concrete have
been obtained from [5] and reported in the ta-
ble below:

Table 1: Analytical and Numerical Material Properties
and Fracture Parameters

Parameter Anal. Num.
E [MPa] 34,978 44,705

Tmax
n [MPa] 3.222 2.706
K1 [MPa] 56.98 45.93
K2 [MPa] 4.191 5.571
T fb
n [MPa] 0.6 0.578

GC [N/m] 151.185 133.569

With the material properties listed above, the
model has been set up as detailed in Figure 4
part a. Before the inverse analysis is conducted,
it is important to validate that the reduced model
outlined in subsubsection 2.3.1, can replicate
the full order model exactly. For this compar-
ison, identical mesh, BC’s and loading is ap-
plied for both models with trilinear cohesive
law in the fracture zone and results are com-
pared through Load/ CMOD curves. The results
of these comparisons are in Figure 5, where the
CMOD is calculated from the same locations.
The computational cost (CPU time) and solu-
tion DOF for both solvers are given in Table 3.2.
It is shown that the proposed MOR methodol-
ogy achieved a speedup of 109.18 and the to-
tal solution DOFs is reduced by 70.6x which is
noted as a significant improvement.

Table 2: Comparison of Computational Cost and Total
DOFs for Full and Reduced Models

Model Comp. Cost [s] Solution DOF
Full Order 350.480 81312

Reduced Order 3.213 2 - 1152
Speedup 109.18 -
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Figure 5: F/ CMOD Curve for Full and Reduced Order
Models

3.3 Bayesian Optimization
As mentioned in subsection 2.5, the inverse

problem is solved via Bayesian Optimization
scheme. Notice, this methodology will work
for any experimental data and the inverse anal-
ysis can be used to determine fracture param-
eters regardless of the CZM model used. The
bounds for the optimization however, depend
on the specific CZM law. In the present case,
four parameters are required to determine the
trilinear law Figure 2 behaviour. Bounds for
these parameters are selected to allow for a wide
range of possible solutions and are given in Ta-
ble 3.3.1.

Table 3: Bounds of Individual Parameters for Bayesian
Optimization

Parameter Trilinear CZM Bounds
Tmax
n [MPa] [2.0 - 4.0]
GC [N/m] [50 - 200]
T fb
n [MPa] [0.18 - 18.7]
K1 [MPa] [2.7 - 189]

3.3.1 Trilinear CZM Results

The Bayesian Optimization with Trilinear
CZM is allowed to run 100 function evalua-
tions with 10 seed points for 4 parameters with
the bounds provided in Table 3.3.1. The op-
timization time is 287.94 seconds with the re-
quired number of function evaluations vs mini-
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mum objective function values reported in Fig-
ure 6 leading to a minimum error of 0.071.
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Figure 6: Objective Function Minimum Error/ Func.
Evaluations for Trilinear CZM Bayesian Optimization.

The results of the trilinear law optimization
are presented as a comparative plot of experi-
mental values vs numerical values for F/CMOD
curves Figure 7 and the obtained traction-
separation curve is shown in Figure 8 with opti-
mized parameters given in Figure 3.3.1.
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Figure 7: Experimental and Numerical F/CMOD curves
for Trilinear CZM Bayesian Optimization.
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Figure 8: Traction Separation Curve after the Bayesian
Optimization for Trilinear CZM.

Table 4: Bayesian Optimization Results for Trilinear
CZM Parameters

Parameter Trilinear CZM
Tmax
n [MPa] 3.859
GC [N/m] 154.85
T fb
n [MPa] 1.29
K1 [MPa] 112.22

Notice, the differences obtained compared to
the numerical results achieved in [5] depicted
in Table 3.2 where, Tmax

n [MPa] was found to
be 2.706 and calculations of this paper calcu-
lated it as 3.859. Similar differences are ob-
served for T fb

n and K1 but the energy release
rate GC [N/m] values are similar where 154.85
is found in this papers calculations and 133.56
from the numerical method and 151.18 for the
analytical calculations are found in the refer-
ence paper.

To obtain the Traction-Separation Curves
shown in and Figure 8, the inverse analysis
is done by a Bayesian Optimization scheme
to calculate CZM parameters depicted in Fig-
ure 3.3.1.The optimization is setup to go
through 100 iterations each, which means solv-
ing the forward problem 100 times. Although
this would usually be done through classical
nonlinear FEM, recall the computational cost is
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drastically reduced through MOR approach de-
tailed in subsection 3.2. The 109x solution time
improvement achieved for the forward problem
becomes significantly more vital to implement
for iterative schemes like the one used for the
inverse analysis here.

4 Conclusions
This study presents a novel approach for effi-

ciently modelling and solving inverse problems
related to fracture behaviour in concrete using
CZM and Bayesian optimization. A reduced-
order modelling (ROM) technique is applied to
accelerate fracture simulations, drastically re-
ducing computational costs while maintaining
accuracy in predicting crack behaviour. The nu-
merical model, consisting of a concrete speci-
men meshed with linear hexahedrons, was val-
idated by comparing full-order and reduced-
order solutions, demonstrating a 109x improve-
ment in computational speed and approximately
70.6x reduction in the total solution degrees of
freedom. The ROM effectively replicated the
behaviour of the full-order model, particularly
in fracture zone simulations, which is critical
for accurate crack propagation predictions.

The inverse problem was solved using
Bayesian optimization to determine fracture pa-
rameters for trilinear CZMs. The optimized pa-
rameters for the CZM law obtained and com-
pared with experimental data, confirming the
efficacy of the Bayesian optimization approach.

The results also demonstrated the potential
of this methodology for efficient inverse anal-
ysis in practical applications, with the reduced
computational cost enabling faster optimiza-
tion. The combination of ROM and Bayesian
optimization offers a powerful tool for frac-
ture modelling, reducing the need for extensive
physical experiments and facilitating more ac-
curate and efficient simulations of material be-
haviour under various loading conditions.

In summary, this work introduces an efficient
and accurate framework for fracture modelling
in concrete, combining advanced numerical
methods with optimization techniques to solve
inverse problems effectively. The methodology

can be extended to other materials and appli-
cations, offering significant benefits in terms of
computational efficiency and model accuracy.
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Luiz AT Mororó, and Lambertus J Sluys. Ac-
celerating crack growth simulations through
adaptive model order reduction. International
Journal for Numerical Methods in Engineer-
ing, 121(10):2147–2173, 2020.

[11] John Leask Lumley. The structure of inhomo-
geneous turbulent flows. Atmospheric turbu-
lence and radio wave propagation, 1967.

[12] Florent Galland, Anthony Gravouil,
E Malvesin, and Michel Rochette. A
global model reduction approach for 3d
fatigue crack growth with confined plasticity.
Computer Methods in Applied Mechanics and
Engineering, 200(5-8):699–716, 2011.

[13] Pierre Kerfriden, Olivier Goury, Timon
Rabczuk, and Stephane Pierre-Alain Bordas.
A partitioned model order reduction approach
to rationalise computational expenses in non-
linear fracture mechanics. Computer meth-
ods in applied mechanics and engineering,
256:169–188, 2013.

[14] Konstantinos Agathos, Stéphane PA Bordas,
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