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Abstract. Ultra-high performance fibre reinforced concrete (UHPFRC) emerged in the last two
decades as a technologically sound building material. It is well known that, in direct tension, softening
takes place for an UHPFRC as long as its fibre content is relatively small. However, strong hardening
may still be obtained for such a material in bending with, possibly, concurrent stable, multiple crack-
ing. Yet, the ability to harden under bending is not a material property, but a mixed material-structural
property, and thus subjected, very particularly, to size-effect, where the expression size-effect is used
in this context in its widest sense of the influence of size on all the aspects characterizing the mechan-
ical response, such as the full load-displacement curve and the whole evolution of the crack pattern.
In this paper, some basic results of a wider numerical study of size- and material-effect are reported
for softening UHPFRCs characterized by a steep initial softening due to matrix cracking followed by
a long, slow softening due to fibre-bridging. The simulations were devised to investigate the coupled
influence of the initial softening slope and of the fibre bridging stresses on the response of similar
beams in pure bending, and cracking was simulated using finite elements with embedded cohesive
cracks (in Hillerborg’s sense). The results show that the nominal stress at visible crack initiation de-
pends essentially on the sharp initial softening and specimen size, while the intensity of post-crack
hardening and mean crack spacing (as well as mean crack opening) depend on the fibre bridging
strength and the specimen size. Dimensionless plots are provided that allow utilization of the results
for other combinations of data in the domain of the simulations.

1 INTRODUCTION

This work aroused in the frame of a research
aimed at developing sound experimental tech-
niques to characterize the fracture properties
of ultra-high performance fibre reinforced con-
crete (UHPFRC), a modern and technologically
mature product, with specific official recom-
mendations and norms (see, e.g. [1–3]), but still
lacking a full support for fracture mechanics
characterization. A first glimpse into the sub-
ject of multiple cracking in bending of beams of
UHPFRC was recently given in [4] —following

previous trends developed in [5, 6]— of which
the present paper is an extension.

As pointed out in [4], UHPFRC is, essen-
tially, a composite made of an ultra high per-
formance cement mortar —the matrix— re-
inforced with fibers (most commonly, high
strength steel fibers). Although much stronger
than ordinary and high strength mortars, such
matrix still behaves as a quasibrittle material
that fails in tension with little plastic strain.
The progressive addition of fibers increases the
toughness of the material, due to their crack-
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bridging effect, until the material starts display-
ing a plastic-like behavior, which means that in-
elastic distributed strains are produced under in-
creasing load before softening starts.

However, for relatively small fibre content,
softening still occurs in pure tension although
strong hardening may be seen in bending [7];
this effect is used in the recommendations to
classify the tensile performance of a particular
concrete as belonging to one of three categories:
(1) the specimens fails through a single crack,
both for direct tension and bending, with small
inelastic deformations prior to the peak load;
(2) for pure tension the specimens fail through
a single crack and negligible inelastic deforma-
tions prior to the peak load, but relatively large
inelastic deformations and hardening before the
peak is reached in specimens tested in bending;
and (3) both in pure tension and bending a rel-
atively large inelastic deformation with harden-
ing occurs prior to the peak load.

Focussing on the behavior displayed by cate-
gories (1) and (2), in which the cracking is gen-
erally described by a cohesive crack model in
the sense of Hillerborg [8–12], it may be ex-
pected that the strength, the hardening behav-
ior and the crack pattern in bending all depend
on the size of the specimen. This was indeed
found experimentally in [13], and the main ob-
jective of this and the previous paper [4] is to set
the ground for a systematic numerical analysis
of the size effect in the bending tests of mate-
rials that display a behavior in pure tension re-
sembling that of a UHPFRC in categories (1)
and (2). In this paper we analyze in more de-
tail new extreme cases that were not dealt with
previously, and which can led to a better under-
standing of the overall size-effect trends when
approaching the small size limit.

The paper is organized as follows: in Sec. 2,
the background necessary to understand the rest
of the paper is presented ; in Sec. 3, the mate-
rial behavior, the geometry and the meshes used
in the computations are described; in Sec. 4,
the results are presented and discussed; Sec. 5
closes with some final remarks.

2 BACKGROUND
In the analysis presented next, cracking of a

quasibrittle material such as concrete or non-
hardening UHFRC is modeled using a gener-
alization of the cohesive crack in the sense of
Hillerborg [8–12]. For pure opening (Mode I),
the crack forms perpendicular to the maximum
principal stress and the stress σ transferred
across its faces is a unique function of the crack
separation w:

σ = f(w) . (1)

The material function f(w) is usually called the
softening curve or softening function and is the
main ingredient of the model.

For general loading, a vectorial traction-
separation law is required between the traction
vector t acting on on one of the faces of the
crack (which is taken as the reference face) and
the crack separation vector w. A quite gen-
eral damage-based vectorial model was recently
proposed by the authors in [14] and summar-
ily expounded in [4]. However, since in the
present problem the cracks open primarily in
pure Mode I, we actually use the simplest of
the available models as described, for example,
in [15], in which t and w are parallel (so called
central force model) and the crack evolution is
governed by a never decreasing damage vari-
able κ so that the equations for the crack are

t=
f(κ)

κ
w , κ=max[|w|], (2)

where f(·) is the Mode I softening function in-
troduced in Eq (1). Note that for pure open-
ing mode w = wn and |w| = w (with n =
unit normal to the crack). If, furthermore, w
increases monotonically, then κ = w and t =
σn = f(w)n and, thus, Hillerborg’s uniaxial
model is recovered.

To carry out the analysis of the size-effect,
the first step is to use a dimensionless version
of the softening curve (1) by selecting a charac-
teristic cohesive stress σch and a characteristic
crack opening wch to write the softening func-
tion in the dimensionless form

σ = f(w) = σchf̂

(
w

wch

)
. (3)
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If, next, one considers geometrically similar
specimens (or structures) made of a crackable
linear elastic material subjected to proportional
loading and gets a mechanically valid solu-
tion for one particular structure ‘A’ of size DA

(beam depth, say), made of an elastic material
with an elastic modulus EA, having a particular
cohesive crack pattern satisfying equations (2)
with a softening function given by (3) with par-
ticular characteristic values σA

ch and wA
ch, then

it turns out that another geometrically similar
structure will accept a mechanically valid solu-
tion similar to that for structure A as long as the
combination of its size D and material proper-
ties E, σch and wch satisfies the condition

Ewch

Dσch
=
EAwA

ch

DAσA
ch

or
ℓ∗

D
=

ℓ∗A
DA

, (4)

with ℓ∗ :=
Ewch

σch
. (5)

When this is the case, the stress and displace-
ment fields in the similar structure (at homolo-
gous points) satisfy the similarity rules

σ

σch
=

σA

σA
ch

,
u

wch
=

uA

wA
ch

(6)

and likewise for the crack tractions and separa-
tions. Note that these rules are valid with the
implicit conditions that the value of Poisson’s
ratio and the shape of the softening curve of the
two materials be the same.

The mixed parameter ℓ∗ in (5)3 is a char-
acteristic length which precise expression de-
pends on the choice of the characteristic val-
ues: while σch := ft seems to be a univer-
sal choice, various choices are possible for wch.
If one takes wch = GF/ft the result for ℓ∗ is
Hillerborg’s characteristic length. Here we take
wch = w1 = initial subtangent of the softening
curve as shown in Fig. 2 to get the second char-
acteristic length, which reads [6]

ℓ2 :=
Ew1

ft
. (7)

Thus, according to Eq. (4) geometrically simi-
lar structures will be also mechanically similar

if their value of ℓ2/D is the same, and, since in
most if not all cases, the strength of a quasib-
rittle structure increases with increasing ℓ2/D,
it would be appropriate to call it something like
structural toughness number.

3 NUMERICAL SIMULATIONS
In this work we consider the same type of

beams and meshes as in [4] as depicted in Fig 1.
The central loading span S is taken to be seven
times the beam depth to allow for the develop-
ment of multiple cracks in cases of hardening.
Two meshes have been used for the calculations
which are also shown in Fig 1. The meshes
were created using the program GMSH [16],
with the meshing algorithm set to “Delaunay”
and applying smoothing.

In this work, as in [4], the material is mod-
eled as quasibrittle linear elastic with Poisson’s
ratio ν = 0.17 and bilinear cohesive fracture
characterized by the four parameters ft, w1, f1
and wc as sketched in Fig. 2, which is taken as
an approximation of a more complex softening
as suggested by the dashed line.

Figure 2: Bilinear softening considered in this work.

To account for the effect of fibre-bridging, we
consider softening tails which are much longer
than for ordinary concrete, and, to reduce the
number of degrees of freedom, consider the
subset of bilinear curves in which wc = 117w1.
Note This value is not totally arbitrary, it comes
from considering the pullout of a bundle of rigid
fibers of length lf from a rigid half-space subjected
only to mutual constant drag shear force per unit
length of fiber, assuming a uniform distribution of
initial pullout lengths; after a few simplifications it
turns out that the value of wc is ≈ lf/4 which, for a
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Figure 1: Beam geometry and meshes (adapted from [4].

well known industrial UHPFRC is 3.5 mm; assum-
ing further a value of w1 ≈ 30µm for the matrix, we
get wc/w1 = 116.7 which we round to 117.

The computations we analize in this paper
have been carried for two shapes of softening
curves, corresponding to two values of γ :=
f1/ft, namely γ = 0.4 and γ = 0.7, and for
each of those softening curves, computations
have been carried out for two very different val-
ues of the structural toughness number, namely
ℓ2/D = 1 and ℓ2/D = 16. Only one of the four
resulting cases was previously analyzed in [4],
namely, the case with γ = 0.7 and ℓ2/D = 1.0.

The computations have been carried out us-
ing the finite element method using constant
strain elements with an embedded cohesive
crack as described in detail elsewhere [6,14,15]
and implemented in the program COFE (Con-
tinuum Oriented Finite Elements).

All the computations have been carried out
under control of the relative horizontal displace-
ment of points A and B, which is denoted as ∆L
in the following (see Fig. 1).

4 RESULTS
The essential numerical results are the di-

mensionless versions of the generalized load-
displacement curves and the crack patterns. In
particular, Fig. 3 shows the plots of the dimen-
sionless nominal stress σN in the central span
versus the inelastic elongation ∆Lin for the var-
ious cases and meshes envisaged, where the in-

elastic elongation is defined as

∆Lin := ∆L−∆Lel

and ∆Lel is the nominal elastic elongation de-
fined, together with σN , in Fig. 1. The first
thing to note from these graphs is that a spu-
rious mesh dependency does not seem to exist
since the results for the two meshes are close
to each other except, maybe, when local insta-
bilities occur due to successive growth of new
cracks. Indeed, severe instabilities occur in the
diagrams for the most brittle material (γ = 0.4),
which are indicated by dashed lines to make
clear that the transition from one equilibrium
state to the next is not an equilibrium path; such
behavior is due to the fact that the control gauge
length used in the simulations is too long for the
control to be effective when one of the various
growing cracks gets suddenly dominant, similar
to what is observed in testing when the testing
machine is not rigid enough or the control sys-
tem not fast enough (although in the numerical
computation no dynamic effects are involved).

Diagrams for the tougher material (γ =
0.7) show that hardening occurs in for the two
extreme cases of structural toughness number
studied here. Since in [4] it was found that this
softening displays hardening also for the inter-
mediate values ℓ2/D = 2, 4, 8 we can conclude
that it hardens in the whole range of values of
ℓ2/D in the interval [1, 16]. Note, however than
the curves for the upper limit of the interval are
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Figure 3: Dimensionless plots of nominal stress σN vs. inelastic elongation ∆Lin, for the two meshes and the two
structural initial toughnesses studied in this paper: for the more brittle material (left) and the tougher material (right).

flatter than for the initial limit and we may sus-
pect that for larger values of ℓ2/D the hardening
can turn into softening as hypothesized in [4]
based on the behavior for the rigid-softening
limit (ℓ2/D → ∞). Further simulations may
settle this point.

An expanded view of the curves around the
first relative maximum reveals that previous to
reaching that point the behavior is independent
of the value of γ, as shown in Fig. 4. This is due
to the fact that, for the range of values analyzed,
all the cracks in the beam are still on the initial
linear softening. This will become even more
evident later in the presentation.

To continue the presentation of results, Fig-
ures 5-8 collect the evolution of crack patterns
by means of a sequence of snapshots at selected
steps for each of the cases considered. Fig-
ures 5-6 correspond to the most brittle mate-
rial (γ = 0.4) and Figs. 7-8 to the toughest one
(γ = 0.7). For each case, the selected steps
are identified by heavy red circles on a curve of
(dimensionless) σN versus ∆Lin curve located
at the top of each figure. Each selected spot is
identified by a letter; lower case letters corre-
spond to points up to the first peak, while upper-
case letters correspond to points after that peak.
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Figure 4: Response curves before and around the first rel-
ative maximum for the finest mesh.

Figures 5-6 for the most brittle material are
very similar, although the second is easier to
follow because multiple cracking is more vis-
ible. Cracking starts in the elements near the
bottom line of the central span soon after σN

exceeds the tensile strength ft as in pattern a in
both figures. As loading proceeds, some cracks
grow faster and wider than the others and the
pattern becomes sparser up to the first peak load
(pattern f in Fig. 5, and pattern h in Fig. 6). In
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the next computational step after the peak, pat-
tern A, a single crack becomes dominant in both
cases while the others fade out, a pattern that is
preserved up to the termination of the computa-
tion for these two cases.

Going next to the patterns for the toughest
material, the behavior is subtly different for the
low and large values of ℓ2/D, and so we com-
ment them independently. For the case in Fig. 7,
the patterns of the steps up to the first peak are
identical to those in Fig. 5, and so we start the
sequence at pattern f and see that in the step just
after it, pattern A, two cracks become dominant,
as well as in point B, but in C the cracks become
four, six in D and the number of cracks keeps
increasing up to ten at point H, and from this
point on the crack pattern remains stable up to I
and further up to the termination of the compu-
tations for ∆Lin well over 50w1.

For the case in Fig. 8, the patterns of the
steps up to the first peak are identical to those
in Fig. 6, and so we start the sequence at pattern
h and see that in the step just after it, pattern A,
there is a single dominant crack, although other
cracks are visible as filaments of slightly lighter
shadows of blues that the dark-blue background
that corresponds uncracked material. At this
point it becomes necessary to specify that the
coloring of the elements is done relative to the
maximum value of the crack opening in the cor-
responding step, according to the color scale at
the bottom of each figure. Thus we see that
in the following point B one of the preexist-
ing, scarcely open cracks, starts to open again
into the light-blue range, then in C a third crack
becomes clearly visible and so on the number
of cracks increases up to eight in H, nine in I
and keeps the same in J, although the domi-
nant crack (the fourth counting from the left)
keeps its colors while the others seem to slightly
fade out. Unfortunately no convergence was
achieved for the two steps following J and so
this is the last valid computation in the series.

To finish the presentation and discussion of
results, we give a compact view of the maxi-
mum crack opening found in the specimen at
the end of each step by placing it in a cohe-

sive stress versus crack opening diagram. The
resulting plots are shown in Figs. 9 and 10 in
which the dashed lines mark the jumps from the
point corresponding to first local peak, which
is always located on the first linear branch of
the the softening, to the next equilibrium point,
which is always located on the second branch of
the softening curve.
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These figures make blatantly clear that up to
the first peak (lower-case letters) the points lie
on the initial softening branch.

5 FINAL REMARKS
The results just reported are consistent with

the conclusions reached in [4], and, in addi-
tion to broadening the spectrum of the analy-
ses by adding a material with a lower tough-
ness γ = 0.4 and getting results for a struc-
tural toughness number ℓ2/ft never investigated
before, they bring insight on how the crack
patterns evolve since the initiation of cracking
soon after the nominal stress exceeds the tensile
strength.

Indeed, the progression is roughly similar:
it starts with a great-many of tiny cracks that
grow or fade-out as load grows in a increasingly
deeper and sparser array of many cracks that,
at a certain point, gets unstable and only one
or two cracks survive; then, depending on the
combination of material and structural tough-
nesses, either one single crack grows under soft-
ening, or further cracks open under hardening.

The foregoing is valid for the range of tough-
nesses used so far, and may be expected to hold
for lower material toughnesses down to γ = 0
(linear softening), but it is obvious that harden-
ing cannot hold forever, and that a second peak
load must exist followed by softening down to
full fracture. The problem is that in most cases
we cannot reach this stage because of compu-
tational limitations of two types: first because
when the crack tips get close to the upper free
surface, to within a distance of one or two ele-
ments, a spurious hardening occurs due to ex-
cessive gradients, and second because with the
algorithm currently used in our computations
the convergence rate decreases appreciably with
the number of cracked elements and cannot
cope with many simultaneous cracks growing
in a very fine mesh.

One relevant issue concerns the unstable
steps found in the foregoing computations, es-
pecially those occurring at the first load peak
when going from many-crack to single-crack,
but also those that occur when a new crack sud-

denly appears in the pattern. Although both the
initial and the final states satisfy equilibrium
(to within numerical tolerance), it is not obvi-
ous that the reached final state do coincide with
the state the system would reach if the process
were under full control. A better control sys-
tem keeping the jumps within ‘reasonable’ lim-
its would be required and work is in progress to
develop it.

A final caveat regarding the reliability of the
crack patterns: previous works [6] showed that
the details of the crack patterns do depend on
the mesh and the step size, but the global, aver-
age values are thought to be reasonably approx-
imate. Quoting from [6]:

“Of course, the localization is triggered by
the small inhomogeneities induced by the
mesh itself (which is a spurious, purely
numerical inhomogeneity, not a material
one). But there seems to be a sufficiently
rich set of locally stable configurations for
the calculations to be meaningful at large.”
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