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Abstract: Understanding the mechanism of crack growth in cement-based materials under 
mechanical loading involves complex interactions between microstructural components, including 
aggregates, voids, and cement paste. This paper presents a unique approach that combines X-ray 
computed tomography (XCT) with deep learning to segment these components precisely. By 
leveraging XCT's high-resolution 3D imaging capabilities and the robustness of deep learning 
algorithms, our method provides a detailed characterization of the microstructure of cement-based 
materials. This detailed structural information is crucial for understanding crack initiation and 
propagation processes, ultimately contributing to developing more durable and sustainable concrete. 
Our results highlight the significant potential of deep learning in enhancing our understanding of 
damage and failure mechanisms in cement-based materials, providing valuable insights that can lead 
to improved material performance and longevity. 
 
1 INTRODUCTION 

Cement-based materials are indispensable to 
civil infrastructure, yet their durability under 
cyclic loading remains a critical challenge, 
especially with increasing traffic demands and 
novel applications [1, 2]. Despite extensive 
research, the fatigue damage mechanisms in 
these heterogeneous materials are not fully 
understood, primarily due to the complex 
interactions among their microstructural 
components: the cement matrix, aggregates, 
and the interfacial transition zone (ITZ) [3, 4]. 

Two dominant hypotheses have emerged to 
explain fatigue damage: progressive 
deterioration of the ITZ[5], often considered the 
microstructure's weakest link and the initiation 
and propagation of microcracks within the 
cement matrix [6-9]. Understanding the relative 
contributions of these mechanisms is vital for 
developing fatigue-life prediction models. 
However, the microscopic scale of damage 

initiation under cyclic loading poses significant 
experimental challenges [4]. 

Experimental challenges in observing 
localized, phase-specific damage evolution 
have hindered progress in linking 
microstructural behavior to overall fatigue 
performance [2, 4]. Conventional cyclic 
loading experiment results, such as 
Stress/Strain-Number of cycles (S-N) curves, 
provide bulk insights but fail to capture the 
spatial and phase-specific processes driving 
fatigue. Scanning electron microscopy (SEM), 
on the other hand, requires destructive sample 
preparation that can introduce artifacts and alter 
the damage state, making it difficult to track 
damage progression accurately[10]. While 
methods reliance on indirect indicators like 
stress waves (AE)[11, 12], surface 
displacements (DIC)[13], or changes in wave 
velocity (UPV)[14], may not directly visualize 
the processes like crack initiation and 
propagation within the material, particularly 
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around the ITZ . To overcome these limitations, 
researchers have turned to non-destructive 
techniques like XCT, which allows for the 
visualization of internal damage features such 
as microcracks, providing a more 
comprehensive understanding of damage 
evolution [4, 15, 16]. However, its high-
resolution data pose significant challenges for 
analysis, particularly in accurately 
differentiating and linking damage mechanisms 
to specific microstructural features within 
heterogeneous phases [4, 16]. 

This study integrates in-situ XCT imaging 
with an advanced semantic segmentation model 
based on a 2D U-Net architecture with a 
ResNet50 encoder and SCSE attention 
mechanisms to address these challenges. This 
innovative approach facilitates precise phase-
specific segmentation, enabling a detailed 
examination of the complex interactions 
between ITZ degradation and matrix 
microcrack growth during fatigue. To capture 
detailed microstructural changes, the 
experimental setup involved cyclic loading of 
cylindrical mortar samples, scanned at critical 
loading intervals. This methodology provides a 
non-destructive framework for visualizing and 
analyzing the interplay between microstructural 
phases, offering new opportunities to study 
fatigue behavior in cementitious materials. 

2 METHODOLOGY 

2.1 In-situ XCT imaging under cyclic 
loading 

Cylindrical mortar samples with a 
diameter of 7 mm and a height of 14.8 mm were 
prepared and analyzed, as described in our 
previous study[17]. The in-situ XCT setup 
included a micromechanical device (CT5000, 
Deben) and an X-ray microscope (Zeiss X-radia 
Versa 520) at DTU's 3D Imaging Center. 
Scanning parameters were set to 100 kV 
voltage, 8 W power, 0.4× magnification, and 3 
seconds exposure time. Each scan, comprising 
801 projections over 360°, lasted 1 hour and 21 
minutes, with a voxel size of approximately 
(13.88 µm)³. 

The sample underwent cyclic loading from 
600 N (15.6 MPa) to 2000 N (52.0 MPa). Scans 
were taken at 600 N after 0, 10, 50, and 200 
cycles, with the 0th cycle representing the 
initial scan after the sample was firstly 
monotonicly loaded to 600 N. 

 
Figure 1: Architecture of U-net with ResNet50 and 
SCSE attention gate 
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2.2 Semantic segmentation model for 
XCT data analysis 

This study trained a semantic 
segmentation model based on a 2D U-Net 
architecture with a ResNet50 encoder to 
segment XCT data by processing the XY slices. 
The model with a detailed architecture in Figure 
1 utilizes pre-trained weights from 
ImageNet[18] for the encoder, which helps 
leverage the powerful feature extraction 
capabilities of ResNet50. Additionally, SCSE 
attention mechanisms[19] were incorporated in 
the decoder to enhance feature extraction by 
recalibrating the feature maps both spatially and 
channel-wise. 

The model was configured with a single 
input channel, as the XCT data is grayscale, and 
five output classes corresponding to the 
segmentation targets: background, aggregate 
particles, cement matrix, pores, and cracks. The 
model was implemented using the 
Segmentation Models PyTorch library[20], 
which provides a high-level API for building 
and training segmentation models. 

2(1 ) ( log( ))
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Loss DiceLoss CrossEntropyLoss
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TP FP FN

= +

= − + −
+ + ∑ 

 (1) 
True Positives (TP) are correctly identified 

as the target, while False Positives (FP) are 
mistakenly classified when they are not. False 
Negatives (FN) are pixels that are incorrectly 
predicted as non-target. The variable yi is 1 if 
pixel i belongs to the target and 0 if it is part of 
the background. The variable pi represents the 
predicted probability that pixel i is the target. 

The training process employed a 
combined loss function of Dice and Cross-
Entropy Loss in Eq(1). The Dice Loss helps to 
maximize the overlap between the predicted 
and ground truth segmentation masks, while the 
Cross-Entropy Loss penalizes the 
misclassification of pixels. The class weights 
were balanced using the logarithmic values of 
the class ratios to address the class imbalance 
issue. The calculated weights are: [0.0201, 
0.0121, 0.0127, 0.2828, 0.6722]. This approach 
ensures that the loss function gives more 

importance to underrepresented classes, 
thereby improving the model's performance on 
these classes. 

56 XY slices of the XCT data were 
selected with a copped size of 512ｘ512. Data 
augmentation techniques, such as random 
flipping, affine transformations, and contrast 
adjustments, were applied to the training data to 
improve the model's generalization ability. The 
dataset was split into training and validation 
sets, with a 70-30 split, and the patches were 
used to train the model. 

The model was trained using the 
AdamW[21] optimizer with a learning rate of 
1×10-4 and a weight decay of 1×10-4. The 
learning rate was decreased to 10% of its 
current value if the validation loss failed to 
improve for more than 10 consecutive epochs. 
The training process also employed mixed 
precision training using GradScaler to speed up 
the training and reduce memory usage. 

An early stopping strategy was employed 
to prevent overfitting and reduce unnecessary 
computation. Training was terminated if the 
validation loss did not significantly improve for 
15 consecutive evaluations. This method halted 
the training process when further progress was 
unlikely. The intersection over union (IoU), as 
defined in Eq.(2), was used to evaluate the 
segmentation accuracy of the model during the 
training phase. 

 ( )IoU TP TP FP FN= + +  (2) 

 
Figure 2: The model training: loss and IoU values 

over epochs. 

The model was trained with a batch size of 
4 using resources provided by the DTU HPC 
Computing Center (https://www.hpc.dtu.dk/), 
specifically 6 nodes with 2 x Tesla V100 16 GB 
GPUs (owned by DTU Compute & DTU 
Elektro) in the gpuv100 queue. As shown in 
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Figure 2, the model converged after 108 epochs, 
achieving an IoU of 83.51% and a loss of 5.63% 
on the validation set. Figure 3 shows selected 
predicted results on 5 images of the validation 
data, demonstrating the model's strong 
generalization capability. 

 
Figure 3: Comparison of raw images, labeled 

images, and predicted results on the validation dataset. 

Table 1 presents the model's performance 
metrics on the validation dataset. Precision 
indicates that 89.54% of the pixels predicted as 
positive are positive, reflecting the model's 
ability to avoid false positives. Recall shows 
that 86.18% of the actual positive pixels are 
correctly identified, indicating the model's 
effectiveness in detecting true positives. 
Accuracy, at 96.33%, represents the overall 
correctness of the model's predictions across all 
classes. The F1 Score, the harmonic mean of 
Precision and Recall, balances the trade-off, 
providing a single score reflecting the model's 
effectiveness in identifying true positives and 
avoiding false positives. These metrics 
demonstrate the model's strong performance in 
accurately segmenting the validation data. 

Table 1: Performance metrics of the model on the 
validation dataset 

Metric Precision Recall Accuracy F1 

Score 0.8954 0.8618 0.9633 0.8676 

3. RESULTS 
Five 3D XCT images were segmented 

using the trained model, including the reference 
image without load, images after monotonic 

loading to 600N, and images after 10, 50, and 
200 cycles. Three orthogonal slices are shown, 
as illustrated in Figure 4. 

  
Figure 4: Three orthogonal slices of the segmentation 
results for the reference image without load, images after 
monotonic loading to 600N, and images after 10, 50, and 
200 cycles, from top to bottom. The 650th XY, 400th YZ, 
and 630th XZ slices are selected. In the images, red 
represents cracks, yellow indicates pores, dark blue 
denotes aggregate, and green signifies the cement matrix. 
The axis scale is measured in pixels, and the loading is 
along the Z direction. 

From  Figure 4, it can be observed that a 
significant crack nearly spans the entire sample 
after monotonic loading to 600N. As cyclic 
loading continues, fine cracks initiate and grow 
in other areas, such as regions A#, B#, and C#. 
These regions were cropped and zoomed in to 
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identify this further, as shown in Figure 5. 

  
Figure 5: Cropped and zoomed-in views of regions A#, 
B#, and C# highlighting crack (red bands) initiation and 
growth after monotonic and cyclic loading. The axis 
scale is measured in pixels. 

From Figure 5, two primary cracking 
behaviors during fatigue cycles are evident. 
Small cracks emerge during cyclic loading 
through two primary mechanisms. First, sudden 
crack formation occurs within the cement 
matrix in regions without pre-existing defects, 
as observed in A# after 10 loading cycles. 
Furthermore, the sudden appearance of cracks 
in the cement matrix suggests the presence of 
microcracks formed during earlier cycles that 
were below the resolution of XCT imaging. 
This observation is consistent with earlier 
findings [22] that a higher density of nanoscale 
cracks, with widths less than 500 nm, were 
present in the cement paste under cyclic loading. 
With continued cyclic loading, these 
microcracks grow rapidly and eventually 

become detectable. Second, cracks often 
initiate within ITZ, particularly in areas 
exhibiting microcracks or defects from prior 
monotonic loading, as highlighted by the red 
bands as cracks in B# and confirmed in C# after 
10 cycles. The ITZ's inherent weaknesses and 
pre-existing damage make it a preferential site 
for crack initiation. 

As loading progresses, existing cracks 
extend and connect to form a more extensive 
crack network, often propagating through the 
ITZ, as shown in C# from 10 to 200 cycles. This 
behavior aligns with established findings in the 
literature[23], which suggest that cracks 
propagate along paths of minimal energy by 
effectively linking pre-existing defects and 
weaknesses. Such propagation pathways are 
particularly evident in B# from 10 to 200 
cycles, where cracks follow the ITZ or other 
energy-efficient routes. The observed patterns 
corroborate prior studies emphasizing the role 
of microstructural characteristics in guiding 
crack growth. 

4 CONCLUSIONS 
This study investigates the fatigue-

induced cracking behaviors in cementitious 
materials using in-situ XCT imaging and a 
semantic segmentation model. The model, 
based on a U-Net architecture with a ResNet50 
encoder and SCSE attention mechanisms, 
achieved high accuracy (96.33%) and IoU 
(83.51%), enabling precise identification of 
cracks, aggregates, cement matrix, and pores in 
XCT datasets. The analysis provides valuable 
insights into crack initiation and propagation 
mechanisms under cyclic loading. 

Two primary mechanisms of cracking 
were identified during cyclic loading: (1) 
sudden crack formation within the cement 
matrix in regions where pre-existing defects are 
not visible at the micronmeter scale using XCT, 
but may exist at smaller scales and (2) crack 
initiation and propagation within the interfacial 
transition zone (ITZ), particularly in areas with 
pre-existing damage. The first mechanism, 
observed in region A# after 10 cycles, suggests 
that cracks in the cement matrix may have been 
initiated from microcracks formed during 
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earlier cycles, which were undetectable due to 
XCT resolution limitations. The second 
mechanism, observed in regions B# and C#, 
indicates that cracks preferentially initiated and 
propagated in the ITZ, which is more 
susceptible to damage due to pre-existing 
defects from monotonic loading. As cyclic 
loading progressed, these cracks grew and 
interconnected, forming an extensive crack 
network that primarily propagated through the 
ITZ and existing cracks, following paths of 
least resistance, i.e., minimizing the energy 
needed for fracture, as seen in regions B# and 
C# from 10 to 200 cycles. 

These findings emphasize the ITZ's key 
role in fatigue damage, suggesting that 
improving its microstructure could reduce such 
damage. Additionally, using higher-resolution 
imaging techniques could enable the detection 
of nanoscale cracks at earlier stages, providing 
deeper insights into the initial damage 
mechanisms. This would contribute to the 
development of more robust predictive models 
for fatigue behavior and help guide the design 
of cement-based materials with improved 
resistance to cyclic stress and longer service 
life. 
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