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Abstract. This contribution revisits the homogenization techniques applied to discrete models in-
corporating rotational degrees of freedom. The theoretical framework extends previous work on the
homogenization of Cosserat continua, demonstrating how these models can be homogenized to a
Cauchy continuum under realistic assumptions. The formulation is developed within the context of
linear elasticity and validated through simulations of a bent cantilever.

1 INTRODUCTION

Heterogeneous materials such as concrete
are critical in civil engineering. Their mechani-
cal behavior is therefore subject of long lasting
research. The ability to simulate these mate-
rials on a large, structural scale while reflect-
ing its heterogeneous mesoscale character is
founded on homogenization techniques. The
classical asymptotic expansion homogenization
developed by Sanchez-Palencia [15, 16] and
others is used here do derive macroscopic be-
havior of elastic discrete mesoscale models of
concrete.

The discrete models with fixed underlying
lattice structure are extremely powerful numer-
ical tools for simulating concrete inelastic be-
havior, including tensile, compressive and tri-
axial loading scenarios [4]. Part of this suc-
cess lies in vectorial constitutive equations that
are oriented and simpler to develop compare to
tensorial, frame invariant approaches. Another
part lies in heterogeneous nature of models with

physical discretization. There is a large num-
ber of such models available including the origi-
nal lattice models [18, 17], mechanical particle-
based models [12, 5, 2] and coupled multiphys-
ical models [11, 10, 19]. In this work we fol-
low the line of mechanical particle models aris-
ing from Voronoi and power tessellation as pro-
posed by Bolander and Saito [3].

Homogenization of these discrete structures
was already developed in Refs. [13, 14, 7]. The
resulting macroscale emerging from homoge-
nization was Cosserat continuum. In the present
contribution, the work of Forest, Pradel, and
Sab [9] on continuous Cosserat models is fol-
lowed, the resulting continuum turns to be of
Cauchy type. In practice, all the previous re-
sults are identical to the new one as the previ-
ously acknowledged macroscopic Cosserat ef-
fects are typically negligible.

2 DISCRETE MODEL EQUATION
The domain is filed with spherical aggre-

gates generated according to Fuller’s curve and
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power tessellation is performed. The cells I of
the tessellation are treated as ideally rigid bod-
ies with the governing node xI bearing three
displacements uI and three rotations θI .

The kinematic equation provides strain be-
tween particle I and J in local orthonormal co-
ordinate system nα, α ∈ (N, M, L), with N
being the normal direction and M and L the tan-
gential directions

eIJα =
1

l
[uJ − uI + E : (θJ ⊗ cJ − θI ⊗ cI)] · nIJ

α

(1)

c is a vector connecting particle governing node
(I or J) with the integration point xc at the con-
tact face, E is Levi-Civita permutation tensor.
The contact length l = ||xJ − xI || and the con-
tact normal nN = (xJ − xI) /l. The last ex-
pression is ensured by the power tessellation
that always creates facets perpendicular to the
branch vectors.

The constitutive equation relates strain to the
traction vector, t. Considering the linear elastic-
ity and the standard form used in discrete mod-
eling, the traction reads

tIJN = E0e
IJ
N (2a)

tIJM = E0αe
IJ
M (2b)

tIJL = E0αe
IJ
L (2c)

with E0 and α being two independent material
elastic parameters.

The balances of linear and angular momen-
tum in steady state for each particle read

−VIb =
∑
J

AIJt
IJ
α nIJ

α (3a)

−VIz =
∑
J

AIJt
IJ
α E : (cI ⊗ nIJ

α ) (3b)

where J runs over all neighbors of particle I
and b and z are external volume force and vol-
ume couple. Boundary conditions prescribe ei-
ther values of the degrees of freedom or associ-
ated reaction forces or couples.

3 SCALE SEPARATION
The periodic Representative Volume Ele-

ment of characteristic size lc is considered as a
building block of the whole model of character-
istic size Lc. The unique macroscopic reference
system is denoted X, its dimensionless version
is X̃ = X/Lc. At each macroscale point the
RVE reference systems y is defined with dimen-
sionless version ỹ = y/lc. A positive scale sep-
aration constant then reads η = lc/Lc.

A limit situation when η approaches zero is
studied. According to Refs. [1, 16] each dimen-
sionless model variable •̃ can be written in an
expanded form as a series of periodic functions
of two independent dimensionless spatial coor-
dinates X̃ and ỹ

•̃(X̃, ỹ) = •̃(0)(X̃, ỹ) + η•̃(1)(X̃, ỹ) + . . . (4)

The dimensionless displacements ũ = u/uc

and rotations θ̃ = θ/θc are considered in the
expanded form. However, the rotations are first
re-written as a combination of the dependent
and independent components

θ̃ = ω̃+ φ̃ (5)

ω is the dependent part dictated by the curl of
the displacement field. The expansion is ap-
plied only to the independent part, φ̃

ũ(X̃, ỹ) = ũ(0)(X̃, ỹ) + ηũ(1)(X̃, ỹ) + . . .
(6a)

φ̃(X̃, ỹ) = φ̃(0)(X̃, ỹ) + ηφ̃(1)(X̃, ỹ) + + . . .
(6b)

According to Fish, Chen, and Li [8] the Taylor
series approximates the mechanical field vari-
ables at node J based on information at the
neighboring node I

ũ(X̃J , ỹJ) = ũ(X̃I , ỹJ) + η
∂ũ(X̃I , ỹJ)

∂X̃j

x̃IJ
j + . . .

(7a)

φ̃(X̃J , ỹJ) = φ̃(X̃I , ỹJ) + η
∂φ̃(X̃I , ỹJ)

∂X̃j

x̃IJ
j + . . .

(7b)

The dependent part of the rotation is expressed
as the half of the curl of the displacement
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field with nabla ∇ operator considered accord-
ing to the chain rule ∇ → ∇X + ∇y =
1/lc (η∇X̃ +∇ỹ).

ω̃ =
1

2
E : (η∇X̃ ⊗ ũ+∇ỹ ⊗ ũ) (8)

where the displacement field in the expanded
form shall be inserted.

The relative magnitude of the normalization
parameters uc, θc, ωc, and φc is considered in
the following way: θc ∼ ωc ∼ φc ∼ uc/lc.
Combining the expansions (6) with Eq. (7) and
Eq. (1) the asymptotic expansion of strain is ob-
tained. The constitutive model maps the strain
to the traction, t, which reads in the expanded
form

t̃ = t̃(0) + ηt̃(1) + . . . (9)

where the terms t(i) can be easily derived di-
rectly from the equations above. The normal-
ization constant for traction is tc = Ecuc/lc.

The balance equations then yields

−l3cbcṼ b̃ = l2c tc
∑
J

Ãt̃αnα (10a)

−l3czcṼ z̃ = l2c
∑
J

Alctct̃αE : (c̃I ⊗ nα)

(10b)

where volume and area are scaled as V = l3c Ṽ
and A = l2c Ã since they are dictated by particle
size comparable to the RVE size, lc. It is reason-
able to assume that volume force and couple act
at the macroscale. This is achieved by assuming
bc ∼ Ecuc/L

2
c and zc ∼ Ecuc/Lc. The balance

equations in their dimensionless form then read

−η2Ṽ b̃ =
∑
J

Ãt̃αnα (11a)

−ηṼ z̃ =
∑
J

Ãt̃αE : (c̃I ⊗ nα) (11b)

These equations are now written at appropriate
levels – powers of η. They are also brought back
to the original dimensional format. The linear

momentum balances yield

η0 : 0 =
∑
J

At(0)α nα (12a)

η1 : 0 =
∑
J

Aηt(1)α nα (12b)

η2 : −V b =
∑
J

Aη2t(2)α nα (12c)

while the angular momentum balance read

η0 : 0 =
∑
J

At(0)α E : (cI ⊗ nα) (13a)

η1 : −V z =
∑
J

Aηt(1)α E : (cI ⊗ nα) (13b)

Balance equations at the higher scales are not
entering the the first order solution and are
therefore omitted.

These equations are now solved sequentially.
At scale η0 the degrees of freedom are u(0) and
φ(0) and the solution reads

u(0) = constant in y φ(0) = 0 (14)

At the next scale with with degrees of freedom
ηu(1) and ηφ(1) the solution must be solved nu-
merically. The degrees of freedom for the sub-
model are in the following form

umic = ηu(1) (15a)

θmic = ηφ(1) +
η

2
E : ∇y ⊗ u(1) (15b)

These variables are found using RVE with pe-
riodic boundary conditions, loading is provided
by projecting macroscopic strain tensor onto the
elements as eigenstrain. The kinematic, con-
stitutive and balance equations to be solved are
exactly those from Sec. 2 providing the particle
displacements and rotations are umic and θmic.

The last step ensures the overall balance of
the whole RVE. The balance equations (12) and
(13) are therefore summed over the RVE. The
first meaningful equations, after some mathe-
matical modifications, lead to the definition of
macroscopic stress

σmac =
1

V0

∑
e∈V0

lAηt(1)α nN ⊗ nα (16)
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and macroscale balance equations

−⟨b⟩ = ∇X · σmac (17a)
−⟨z⟩ = E : σmac (17b)

where ⟨•⟩ is the volumetric average of variable
• over the RVE. The first equation is the stan-
dard balance equation of Cauchy continuum for
unknown macroscopic displacement u(0) while
the second equation dictates symmetry of the
stress tensor.

Figure 1: Examples of periodic discrete structures used to
compute homogenized response at the RVE scale: from
the bottom lc = 0.05, 0.1, and 0.2 m.

4 VERIFICATION
Two dimensional model of a cantilever of

size 1×6 m2 is loaded by force at the end. The
homogenized model meshes the cantilever by
square bilinear isoparametric Cauchy finite el-
ements of size 0.025×0.025 m2, there is there-
fore 40×240 such elements. Each integration
point contains a precomputed square periodic
RVE submodel of sizes lc = 0.05, 0.1 and
0.2 m. RVEs are represented by discrete models
created by randomly placing circular aggregates
with no overlapping and subsequently perform-
ing the power tesselation. Aggregate diameters
are given by Fuller curve, the maximum diam-
eter is 10 mm and the minimum one considered
is 4 mm, see Fig. 1. The same discrete model
is used as the full model for the whole can-
tilever. Bending stiffness (loading force caus-
ing unit deflection) is computed for all homog-
enized and full models.

The discrete model response is essentially
random due to random location of the aggre-
gates. To reduce this randomness, there are
6 full models and 50 homogenized models for
each RVE size used to obtain statistical charac-
teristics of the bending stiffness. The average
and standard deviation of the stiffness is shown
in Fig. 2.

The bending stiffness mean value of the full
and homogenized models is almost identical.
The difference shall be attributed to (i) insuf-
ficient statistical sample size and also (ii) some
small differences in the structure of the discrete
model due to boundary layer effect present in
the full model [6]. The maximum difference is
about then 0.5 %. The standard deviation of the
full model is quite low compared to the homoge-
nized models thanks to the large number of par-
ticles. As the RVE size increases, the standard
deviation of the homogenized models decreases
due to the same reason.

5 CONCLUSIONS
Following the work of Forest, Pradel, and

Sab [9], the discrete model with rotational de-
grees of freedom is homogenized into Cauchy
continuum. The angular momentum balance
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Figure 2: Bending stiffness of the cantilever computed by the full models and homogenized models of different RVE size.

equation ensures the stress tensor symmetry. To
derive this result, rotations of the particles must
be decomposed into the part dependent on curl
of the displacement field and the independent
part. Simple verification example confirmed the
derived equations.
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