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Abstract. Thin-walled structures made of concrete, or other forms of cement-based composites, are
common within the civil infrastructure. In many situations, such structures experience out-of-plane
loading, which can lead to various forms of distributed cracking depending on the boundary condi-
tions. Discrete mechanical models are appropriate for simulating such cases of distributed fracture.
However, their applications toward modeling the out-of-plane behavior of thin-walled structures are
few. One main difficulty involves the large computational expense associated with three-dimensional
discretizations of the structure, which are typically needed to capture crack propagation through the
wall thickness. In this research, an extension of the Voronoi-cell lattice model (VCLM) is proposed
to simulate the behavior of planar structural elements subjected to out-of-plane loading. Based on
a two-dimensional network of nodes, a layered assembly of the element cross-sections provides a
three-dimensional description of section behavior. With sufficiently fine discretization of the planar
structure, this layered VCLM is shown to be elastically uniform for combined membrane and flexural
loadings. Compared to corresponding three-dimensional discretizations, computational expense is
greatly reduced, thus extending the range of modeling applications. Other capabilities of the layered
VCLM, and the consequences of mesh resolution of the lattice structures, are demonstrated through
elastic stress analysis and fracture analyses of grid-reinforced cement-based composites.

1 INTRODUCTION

Thin-walled cement-based composites are
being developed for a variety of applications,
including structural panels, free-form architec-
tural units, and retrofit technologies. The re-
duction in materials usage associated with thin-
walled elements may also have environmental
benefits. At another scale of observation, rein-
forced concrete slab/wall elements can viewed
as a form of thin-section construction. For in-
plane loading (e.g., in form of uniaxial tension
or diagonal tension/compression), such struc-

tures can be analyzed using planar models [6].
For cases of out-of-plane loading, however,
analyses are complicated by the need to track
crack movement (or other forms of nonlinear-
ity) within the thin section. Models based on
three dimensional discretizations of the material
domain can provide accurate results [23], yet
are computationally expensive even for moder-
ately sized structural members.

This research employs layered Voronoi-cell
lattice models (L-VCLM) to simulate the be-
havior of such thin-walled/thin-section mem-

1

https://doi.org/10.21012/FC12.1264
MS10-2:6

https://doi.org/10.21012/FC12.1264


Qiwei Zhang, Alessandro Fascetti and John Bolander

bers under out-of-plane loading. The VCLM
belongs to the family of particle-based lat-
tice models, which are applicable to model-
ing cracking in concrete materials and struc-
tures [4, 5, 8, 11, 14, 17, 25]. As distinguish-
ing feature of the L-VCLM, it is based on a
two-dimensional network of nodes that defines
the central plane of the thin-section member.
Relative to three-dimensional discretizations of
the material domain, the planar model reduces
computational expense. The VCLM, and its
layered counterpart considered herein, accom-
modates various schemes for representing inter-
nal reinforcement, including the grid-type rein-
forcement.

Basic properties of the L-VCLM are first
demonstrated through elastic stress analyses.
When considering out-of-plane loading, it is
found that model behavior depends on the mesh
resolution of the planar network of nodes. Re-
ducing nodal spacing, while keeping the thick-
ness dimension constant, leads to elastically
uniform representations of the member. There-
after, simulations of fracture in ferrocement
panels demonstrate an acute sensitivity to rein-
forcement positioning within the thin section.

2 MODEL FORMULATION
2.1 Domain discretization

The process of constructing the layered ele-
ments can be done in different ways. After par-
titioning the central plane of the structure into
Voronoi cells, as shown in Fig. 1(a), options in-
clude

• partitioning each Voronoi facet into m
layers of uniform height. Each layer
then becomes the facet of a conventional
rigid-body-spring element connected on
the mid-plane nodes. This process is akin
to the fiber-based discretization of cross-
sections of uni-directional elements [2].

• extrusion of the nodal pattern in the thick-
ness direction. For example, for each
node in Fig. 1(a), an additional m − 1
nodes are placed in the thickness direc-
tion, uniformly spaced above and below

the central plane as shown in Fig. 1(b).
The 3D network of nodes is tessellated,
resulting in m identical horizontal lay-
ers of elements connecting through the
same partitioning of the vertical facets.
The connectivities of those horizontal el-
ements are then referenced to the mid-
plane nodes, which produces the desired
layered elements (Fig. 1(c)). The extra-
neous nodes used for the 3D tessellation
have to be removed or constrained.

Figure 1: Layered Voronoi-cell lattice model: (a)
Voronoi partitioning of mid-plane nodes; (b) 3D tessel-
lation based on an extruded set of nodes (c) layered ele-
ment construction

The second of these two options is used
herein. The 3D discretization produced at the
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intermediate stage can be used for 3D VCLM
analyses of the structure, which serves as a
comparator for the L-VCLM analyses. The
presence of the 3D discretization also facilitates
plotting of the deformed structure.

2.2 Element formulation
The elements within the VCLM utilize the

rigid-body-spring concept of Kawai [13]. Each
element is composed of a zero-size spring set,
positioned at the centroid of the correspond-
ing Voronoi facet, and connected to the Voronoi
cell nodes via kinematic constraints. The axial
springs are aligned with a coordinate system,
defined local to the Voronoi facet, and are as-
signed the stiffness coefficients:

ks = kt = αkn = αE
Aij

hij

(1)

where E is the elastic modulus of the matrix
material; Aij is the area of the Voronoi facet;
and hij is the distance between nodes i and
j. Subscripts n, s and t designate the facet-
normal and two facet-tangential directions, re-
spectively. The zero-size spring set also in-
cludes three rotational springs, one associated
with each local coordinate axis. The stiffness
coefficients of the rotational springs are given
elsewhere [1].

Parameter α is a factor related to macro-
scopic Poisson ratio ν [9]. For the case of α = 1,
the lattice model is elastically uniform with re-
spect to in-plane loading, albeit with ν = 0.
Through the iterative introduction of auxiliary
stresses [1], the stress fields can be accurately
represented, in both local and global senses, for
arbitrary settings of the elastic constants, E and
ν. Heterogeneity can be introduced into such
elastically uniform models in a controlled man-
ner [24]. As will be shown herein, however,
spurious fluctuations in stress may appear when
the models are subjected to flexure loading.

To account for fracture, the spring set stiff-
ness are modified isotropically according to a
damage model, in conjunction with a softening
relation that preserves fracture energy with re-
spect to changes in element size [3]. A con-

trolled number of fracture events are allowed
per computational cycle, as done in other lat-
tice modeling approaches [10,22]. The strength
envelope, which governs tensile softening and
nonlinearity in compression, is defined in terms
of normal and tangential shear stresses acting
on the element facets. The specific form of the
envelope is taken from Cusatis et al. [8].

Apart from the layered structure of the L-
VCLM, the elements themselves are no differ-
ent from those used in past studies, e.g., [18].
As such, the L-VCLM can accommodate meth-
ods for simulating creep [15] or other phenom-
ena [7] that are compatible with the planar sec-
tion constraint imposed by the layered structure.

2.3 Modeling of reinforcement
Various forms of reinforcement, such as

short or continuous fibers, can be placed within
the VCLM [12, 14, 19]. Those forms of rein-
forcement can be represented

• discretely, such that the reinforcement
possesses computational degrees of free-
dom. The reinforcement nodes are joined
to the Voronoi cell nodes, representing
the cement-based matrix, via conven-
tional bond link elements; or

• semi-discretely, where the pre- and post-
cracking actions of the reinforcement are
kinematically constrained to the degrees
of freedom of the local Voronoi cells.

The first of these two options is used for model-
ing the wire-grid reinforcement in ferrocement
panels, as presented in Section 4.

3 ELASTIC STRESS ANALYSIS
As a general example, a square panel is sub-

jected to combined uniform loading of in-plane
compression and bending moment (Fig. 2).
Three different discretizations are considered,
as shown in Fig. 3, in terms of average element
aspect ratio ξ = h/w, where h is the average
element size and w is the panel thickness. The
number of layers m = 11 remains consistent
among the three cases.
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Loads are imposed via rigid platens located
at the slab edges. The vectorial stress compo-
nents of each spring set, evaluated at the cen-
ter of each layer, are obtained and visualized as
scatters in the σ−τ plane, where each point cor-
responds to a pair of normalized normal stress
σ and shear stress τ .

Figure 2: Modeling of planar structure under combined
membrane and flexural loading: (a) structural layout and
loading configuration; and (b) an element cross section
and target stress distribution in the thickness direction.

The semi-circular patterns in Fig. 4 generally
align with the predictions of Bernoulli beam
theory in an averaged sense; however, some
degree of randomness in the stress distribution
persists. Energy dissipation through shear de-
formation occurs as shear springs are invoked,
triggered by the differences of tangential slid-
ing between the neighboring elements. There-
fore, the outer layers undergo larger deflections,
causing increased stress fluctuations. The rigid-
body nature of lattice elements and the ran-
dom geometry of Voronoi cells contribute to
the stress deviations, which are significantly
reduced with mesh refinement, as shown in
Fig. 4(c). Therefore, an elastic uniform stress
state of a planar structure under bending can be
achieved, given the element size to be relatively
small.

Figure 3: Mid-plane domain discretization based on dif-
fering average element aspect ratios ξ

For elastic deformation and stress analysis
of homogeneous plates, the results presented
in this section provide deeper insight into the
accuracy of planar rigid-body-spring networks
under out-of-plane loading. The primary ben-
efits of thickness subdivision become evident
when modeling nonlinear material behavior,
such as fracture, as detailed in the following dis-
cussion.
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Figure 4: Elastic stresses within the planar model under
various mesh resolutions: (a) ξ = 1.0; (b) ξ = 0.5; and
(c) ξ = 0.3

4 FRACTURE ANALYSIS OF GRID-
REINFORCED COMPOSITES

To further demonstrate capabilities of the L-
VCLM, simulations of fracture within ferroce-
ment panels are presented.

4.1 Model configuration
The models are patterned after a series of

physical test specimens [20]. In total, 32 pan-
els were tested in third-point loading under dis-
placement control. Each panel had dimensions
of L×b×w = 305×76×12.7 mm3 and was re-
inforced with two (staggered) layers of welded
wire fabric. The fabric was composed of 19-
guage galvanized steel wire spaced at 12.7 mm
in each direction.

During the experimental campaign, it was
not possible to achieve uniform positioning of
the layers of wire fabric within the panel form-
work. The wire fabric was supplied in roll
form, such that it was difficult to flatten. To

mimic such conditions in the modeling frame-
work, the layers of wire fabric were positioned
using instances of a spatially correlated random
field [16]. In particular, the locations of the
wire fabric nodes within the thickness direction
were set by controlling the mean value, vari-
ance, and correlation length of the random field.
One such placement of a fabric layer is illus-
trated in Fig. 5.

In the experimental program, loading was
applied under displacement control to a cross-
bar that distributed force uniformly to the third-
point locations of the panel specimen. This
setup was imitated by including an additional,
quasi-rigid layer of lattice elements above ei-
ther the VCLM or L-VCLM representations of
the panel specimens.

Figure 5: Random positioning of a reinforcement layer
within the panel specimen model

4.2 Analysis results
Figure 6 compares load versus mid-span dis-

placement curves provided by the L-VCLM and
3D VCLM simulations for one random posi-
tioning of the fabric layers. The elastic loading
branches of each curve are practically identical.
Within the experimental program, the loading
branches exhibited higher initial compliance as-
sociated with settling of the specimens within
the loading device. Figure 6 shows the elas-
tic stiffness of the test specimens measured af-
ter the period of higher compliance. There-
after, each simulation result exhibits at least
two prominent drops in load resistance, associ-
ated with the formation of well-defined cracks
across the panel width, as shown in Fig. 7. The
first two cracks follow the same pathways in
both simulations. The third crack differs but
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follows the same general trajectory. Most of the
observed cracking in the experimental program
ran perpendicular to the span direction; lightly
skew cracking, as seen in Figs. 7(b) and (c), was
observed in some cases. For the physical test
results shown in Fig. 7(c), the wire-grid rein-
forcement is distant from the tensile face of the
specimen, such that only two cracks formed.

Figure 6: Ferrocement panel response to third-point
loading

Figure 7: Crack patterns obtained from: (a) 3D VCLM
analysis; (b) L-VCLM analysis; and (c) physical test
specimen with similar wire grid positioning

The simulated load levels fit within the
observed experimental scatter of peak loads,

which ranged between 12.2 and 28.2 N·m. Both
peak load and the number of cracks that form
within the constant moment region depend on
the distance of the fabric layers from the tensile
face of the panel.

Additional comparisons with the experimen-
tal data are forthcoming. In particular, a range
of specimen behaviors can be simulated de-
pending on

• the random realizations of wire fabric po-
sitioning within the cement-based matrix;
and

• the assignments of bond-link properties,
accounting for the anchoring actions of
the transverse wires of the fabrics.

Preliminary calculations suggest that the sim-
ulated range of behaviors is in good general
agreement with the experimental results.

When comparing the 3D VCLM and the pro-
posed L-VCLM, the time required to factorize
the system of equations is a reasonable mea-
sure of computational efficiency. Factorizations
were performed using a sparse-matrix solution
technique [21]. For the ferrocement panel sim-
ulations presented herein, the L-VCLM is faster
by a factor of about 25. Even greater improve-
ments in efficiency are expected when modeling
larger, more practical structures.

5 CONCLUSIONS
This research involves the development of

computationally efficient methods for simulat-
ing the behavior of planar structures for out-
of-plane loading. Voronoi-cell lattice models
(VCLM) are used for this purpose. Efficiency
is achieved through a layering of the cross-
sections of the lattice elements, such that a two-
dimensional lattice can be employed. Some
capabilities of the layered Voronoi-cell lattice
model (L-VCLM) are demonstrated through
elastic stress analysis and fracture analysis of
ferrocement panels. The following conclusions
can be made:

• The L-VCLM can be rendered elastically
uniform under combined membrane and
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bending actions, provided the length of
the elements is small relative to the thick-
ness dimension, i.e., ξ << 1. For
coarser discretizations, roughly ξ > 0.5,
the stress field exhibits significant scatter
about the theoretical values. This spuri-
ous form of heterogeneity reflects local
differences in the geometry of the lattice.

• The L-VCLM significantly reduces the
computational cost relative to a compara-
ble 3D VCLM. For the ferrocement panel
simulations considered herein, the time
for each factorization of the system equa-
tions was reduced by a factor of about 25.
When considering larger and more prac-
tical structures, even better improvements
in efficiency are anticipated.

• The gains in computational efficiency
from the L-VCLM are obtained without
appreciable loss in accuracy. Simulations
of the third-point bending tests indicate
that the L-VCLM produces acceptably
accurate results, using 3D VCLM anal-
ysis results for comparison. In particu-
lar, the initial loading branches and early
cracking behavior of the two simulations
are practically identical. This correspon-
dence between the analysis results sug-
gests that the grid-type reinforcement is
capably represented by the L-VCLM.
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Nagai, K., Discrete mechanical models
of concrete fracture. Engineering Fracture
Mechanics 257 (2021) 108030.

[6] Bolander, J.E. and Wight, J.K. Finite el-
ement modeling of shear wall dominant
buildings. Journal of Structural Engineer-
ing, ASCE, 117(6) (1991) 1719–1739.

[7] Chang, Z., Xu, Y., Chen, Y., Gan, Y.,
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[9] Eliáš, J., Elastic properties of isotropic
discrete systems: Connections between
geometric structure and Poisson’s ratio.
International Journal of Solids and Struc-
tures 191 (2020) 254–263.

[10] DeJong, M.J., Hendriks, M.A.N., Rots,
J.G., Sequentially linear analysis of frac-
ture under non-proportional loading. En-
gineering Fracture Mechanics 75(18)
(2008) 5042–5056.

[11] Grassl, P. A lattice approach to model flow
in cracked concrete. Cement & Concrete
Composites 31(7) (2009) 454–460.

[12] Kang, J., Kim, K., Lim, Y.M. and Bolan-
der, J.E., Modeling of fiber-reinforced ce-
ment composites: discrete representation
of fiber pullout. International Journal of

7



Qiwei Zhang, Alessandro Fascetti and John Bolander

Solids and Structures 51(10) (2014) 1970–
1979.

[13] Kawai, T., New discrete models and their
application to seismic response analysis of
structures. Nuclear Engineering and De-
sign 48(1) (1978) 207–229.

[14] Kunieda, M., Ogura, H., Ueda, N. and
Nakamura, H. Tensile fracture process of
strain hardening cementitious composites
by means of three-dimensional meso-scale
analysis. Cement & Concrete Composites
33(9) (2011) 956–65.

[15] Di Luzio, G. and Cusatis, G.
Solidification-microprestress-microplane
(SMM) theory for concrete at early
age: theory, validation and application.
International Journal of Solids Structures
50 (2013) 957–975.
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[24] Zhang, Q., Eliáš, J., Nagai, K. and Bolan-
der, J.E., Discrete modeling of elastic het-
erogeneous media. Mechanics Research
Communications 137 (2024) 104277.

[25] Zhu, Y., Jia, D., Brigham, J.C. and
Fascetti, A. Coupled lattice discrete par-
ticle model for the simulation of water
and chloride transport in cracked con-
crete members. Computer-Aided Civil and
Infrastructure Engineering (2024) 1–24,
doi:10.1111/mice.13385.

8


	INTRODUCTION
	MODEL FORMULATION
	Domain discretization
	Element formulation
	Modeling of reinforcement

	ELASTIC STRESS ANALYSIS
	FRACTURE ANALYSIS OF GRID-REINFORCED COMPOSITES
	Model configuration
	Analysis results

	CONCLUSIONS

