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Abstract: The present work attempts to address the issue of constitutive response and consistency of 

plastic strain-induced anisotropy of Lee-Fenves Concrete Damaged Plasticity (CDP) constitutive 

model. The CDP model, which comes to be available within the ABAQUS commercial FEM 

platform, shall be able to reproduce typical features of the failure process of quasi-brittle materials 

subjected to multiaxial cyclic loadings, according to FEM modelizations and simulations at the 

structural scale that may arise in different challenging engineering contexts. This is achieved by 

combining an effective stress-based nonassociative hardening/softening plasticity model, with an 

isotropic damage model based on plastic strains and stiffness loss/recovery capabilities during 

microcrack opening/closing, at a smeared continuum scale. Herein, several numerical analyses are 

performed, starting at a constitutive-driver level, to experiment the outcomes of the constitutive 

description and to quantify the amount of material anisotropy induced by plastic deformation, for 

representative non-proportional loading histories, which may involve the rotation of principal 

strains/stresses (Willam’s test). Extrapolating implications and outcomes at the structural scale may 

then consistently follow, in the realm of significant practical applications within different structural 

engineering contexts. 
 

 

1 INTRODUCTION 

Nowadays, the structural analysis of large-

scale concrete structures such as reactor 

vessels, nuclear containments, large dams and 

offshore platforms, for which experimental 

investigations are usually prohibitively 

expensive, still constitutes a challenging task, 

within the structural engineering field.  

Unlike metals, concrete is a strongly 

heterogeneous material that exhibits several 

mutually interacting inelastic mechanisms such 

as microcrack growth, anisotropic elastic 

degradation, non-associated plastic flow, 

unstable post-failure behaviour with 

localization phenomena and hysteretic 

unloading loops, to mention only a salient few. 

Therefore, the task of developing consistent and 

sufficiently accurate constitutive models for 

concrete at all stages of loading turns out to be 

a quite complicate challenge.  

Within the framework of a typical 

idealization at the continuum level of the 

microscopic material behavior, it has widely 

been accepted that coupling between damage 

and plasticity theories shall become essential, to 

effectively capture the nonlinear behavior of 

concrete [2]. Formulations of plasticity models 

for concrete should also include a non-

associated flow rule and an isotropic hardening 

rule [18].  

Even though an isotropic damage 

description for stiffness degradation constitutes 

a simplified assumption, isotropic damage 
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models coupled with plasticity have shown to 

be capable of capturing concrete measured 

responses under nonproportional uniaxial and 

biaxial loading conditions ([8],[10],[11],[23]). 

The plastic-damage model of Lee and 

Fenves [10], born as an upgrade of the 

Barcelona model of Lubliner et al. [11], shall 

belong to this category. The availability of Lee 

and Fenves’ constitutive plastic-damage model 

into the library of constitutive laws distributed 

by the ABAQUS commercial finite element 

software [1], with the well-known acronym of 

Concrete Damaged Plasticity (CDP) model, has 

boosted its widespread application in both 

academic research and engineering practice, for 

the nonlinear analysis of concrete structures. 

The CDP model describes in an efficient 

fashion several of the basic features of the 

mechanical nonlinear behaviour of concrete: 

isotropic strength and stiffness degradation 

(strain-softening) under tension, compression 

and tension-compression stress (or strain) 

states, strength and ductility increase in 

compression under increasing lateral 

confinement, development of permanent 

(plastic) strains and Microcracks Closing-

Reopening (MCR) effects. However, no 

damage-induced anisotropy can occur at the 

material point level, as herein shown, whereas 

plastic strain-induced anisotropy shall 

theoretically take place. Therefore, an attempt 

of evaluating the extent of such anisotropy 

driven only by plastic strains seems pertinent, 

in order to draw some conclusions about its 

influence on the CDP material response. This 

issue is tackled in the present paper, where 

various numerical experiments are performed at 

a constitutive-driver level, to evaluate the 

amount of rotation of principal stress directions 

under prescribed rotating principal directions of 

strains, as dictated by Willam’s test [21]. 

The present paper is organized as follows. 

The constitutive formulation of the CDP model 

is briefly summarized, in its main relations, in 

Section 2, where the conditions under which a 

anisotropic behaviour may be predicted by the 

CDP model under multiaxial stress states are 

also explored. The extent of plastic strain-

induced anisotropy predicted by the CDP model 

for increasing values of CDP dilatancy factor 

and cumulated plastic strains is discussed in 

detail in Section 3, where the outcomes of 

numerical analyses performed at a constitutive-

driver level within the ABAQUS platform are 

presented for representative biaxial non-

proportional loading histories (Willam’s test). 

Closing considerations are finally outlined in 

Section 4. 

2 CONCRETE DAMAGED 

PLASTICITY (CDP) MODEL 

2.1 General constitutive relations 

In this section, the fundamental relations of 

the rate-independent CDP model are illustrated 

within the corresponding small strains 

framework. Index tensor notation is adopted 

(the repetition of Latin indices implying 

summation from 1 to 3, according to Einstein 

summation convention). An overdot denotes 

material time derivative, i.e. the rate of a given 

quantity; since the considered constitutive 

model is rate-independent, the rates must be 

interpreted as linked to infinitesimal increments 

of the loading history described by parameter 𝜏. 

A state index 𝜄 ∈ {𝑡, 𝑐} is here adopted, where 𝑡 

denotes tensile-dominated stress states and 𝑐 

compression-dominated stress states. 

The general incremental relations of the 

CDP model are here briefly summarized: 

𝜀�̇�𝑗 = 𝜀�̇�𝑗
𝑒 + 𝜀�̇�𝑗

𝑝
; (1a) 

�̇�𝑖𝑗 = (1 − 𝐷)�̇̅�𝑖𝑗 − �̇��̅�𝑖𝑗, �̇̅�𝑖𝑗 = 𝐸𝑖𝑗𝑘𝑙
0 𝜀�̇�𝑙

𝑒 ; (1b) 

1 − 𝐷 = [1 − 𝑟(�̅�𝑖𝑗)𝐷𝑡(𝜅𝑡)](1 − 𝐷𝑐(𝜅𝑐)); (1c) 

𝜀�̇�𝑗
𝑝

= �̇�
𝜕𝑔(�̅�𝑖𝑗)

𝜕�̅�𝑖𝑗
; (1d) 

𝜅𝑡 =
1

𝑔𝑡
𝑝𝑓

∫ 𝑓𝑡(𝜅𝑡)𝑟(�̅�𝑖𝑗)𝑑𝜀𝐼
𝑝

𝜀𝐼,𝑀
𝑝

0

; 

𝜅𝑐 =
1

𝑔𝑐
𝑝𝑓

∫ 𝑓𝑐(𝜅𝑐)[1 − 𝑟(�̅�𝑖𝑗)]𝑑𝜀𝐼𝐼𝐼
𝑝

𝜀𝐼𝐼𝐼.𝑚
𝑝

0

; 

𝜀𝐼,𝑀
𝑝

= max
𝑡

{𝜀𝐼
𝑝

} , 𝜀𝐼𝐼𝐼,𝑚
𝑝

= min
𝑡

{𝜀𝐼𝐼𝐼
𝑝

} ; 

(1e) 

�̇� ≥ 0,    𝑓̇(�̅�𝑖𝑗, 𝜅𝜄) ≤ 0,    �̇��̇�(�̅�𝑖𝑗, 𝜅𝜄) = 0. (1f) 

Eq. (1a) represents the usual additive 

decomposition of small strain rate tensor 𝜀�̇�𝑗 

into an elastic part (𝜀�̇�𝑗
𝑒 ) and a plastic part (𝜀�̇�𝑗

𝑝
).  
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Eq. (1b) constitutes the incremental form of 

the elastic stress-strain relation, where 𝜎𝑖𝑗 and 

𝜎𝑖𝑗 are the nominal and effective stress tensors, 

respectively, which are related according to the 

principle of strain equivalence as 

𝜎𝑖𝑗 = (1 − 𝐷)�̅�𝑖𝑗; (2) 

through scalar damage variable 0 ≤ 𝐷 ≤ 1, 

introduced to represent the isotropic 

degradation of the secant elastic stiffness, 

whereas 

𝐸𝑖𝑗𝑘𝑙
0 = 𝜆0𝛿𝑖𝑗𝛿𝑘𝑙 + 2𝐺0

1

2
(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘); 

𝜆0 =
𝜈0𝐸0

(1 + 𝜈0)(1 − 2𝜈0)
,   𝐺0 =

𝐸0

2(1 + 𝜈0)
; 

(3) 

is the fourth-order isotropic elastic stiffness 

tensor of the intact (undamaged) material, 

depending on Lamé’s constants 𝜆0, 𝐺0 (𝐸0: 

Young’s modulus, 𝜈0: Poisson’s ratio), and 𝛿𝑖𝑗 

is Kronecker’s delta. 

Eq. (1c) characterizes the approach 

proposed by Lee and Fenves (1998) [10] to 

reproduce MCR effects, by means of two 

inherent stiffness degradation variables, to 

account for different damage states mainly 

occurred during tensile stress states (𝐷𝑡) and 

compressive stress states (𝐷𝑐), and an isotropic 

weight function 0 ≤ 𝑟 ≤ 1 of the effective 

stress inducing a stiffness recovery effect: 

𝑟(�̅�𝑖𝑗) = {

0 if �̅�𝑖𝑗 = 0

∑ ⟨�̅�𝐾⟩3
𝐾=1

∑ |�̅�𝐾|3
𝐾=1

otherwise
; (4) 

where ⟨ ∙  ⟩ is the McAulay bracket operator 

(so-called positive part or ramp function) and 

𝜎𝐾 (𝐾 = 1,2,3) are the principal values of the 

effective stress tensor.  

Eq. (1d) represents the non-associative flow 

rule expressing 𝜀�̇�𝑗
𝑝

 as the gradient of a scalar 

function 𝑔(𝜎𝑖𝑗) of the effective stress, so-called 

plastic potential, scaled by non-negative plastic 

consistency multiplier �̇�. Since the Drucker-

Prager (DP) function of the original Lee and 

Fenves’ CDP model displays a singular point at 

the origin (apex of the cone), which should be 

avoided for numerical reasons, the following 

DP hyperbolic function has been implemented 

into the ABAQUS platform [1]: 

𝑔(�̅�𝑖𝑗) = √(𝛼𝑑
′ 𝑓𝑐𝑡0𝑒)2 + 3𝐽2̅ −

1

3
𝛼𝑑

′ 𝐼1̅; (5) 

where 𝐼1̅ = tr(�̅�𝑖𝑗) = 𝜎𝑖𝑖 is the first invariant of 

the effective stress tensor, 𝐽2̅ = �̅�𝑖𝑗�̅�𝑖𝑗 2⁄  is the 

second invariant of the effective stress 

deviatoric tensor �̅�𝑖𝑗 = 𝜎𝑖𝑗 − 𝐼1̅ 3⁄ 𝛿𝑖𝑗, 𝑓𝑐𝑡0 is 

the uniaxial tensile stress at failure of the 

undamaged material, 𝛼𝑑
′  is the dilatancy factor 

associated with the definition of 𝑔 as expressed 

by Eq. (5), while parameter 𝑒, referred to as 

eccentricity, controls the rate at which the 

function approaches its asymptotic trend 

(𝑔 tends to a straight line in the �̅�-�̅� plane, as 

𝑒 → 0, where �̅� = 𝐼1̅ 3⁄  and �̅� = √3𝐽2̅).  

Eqs. (1e) express the two hardening/ 

softening rules for the evolution of two 

independent internal variables 0 ≤ 𝜅𝜄 ≤ 1 

(𝜄 ∈ {𝑡, 𝑐}), which resemble the hardening 

variables of classical plasticity in that they 

never decrease, and they increase if and only if 

plastic deformations take place. These variables 

determine the evolution of both tensile/com- 

pressive strengths 𝑓𝑡(𝜅𝑡), 𝑓𝑐(𝜅𝑐) and different 

damage states 𝐷𝑡(𝜅𝑡), 𝐷𝑐(𝜅𝑐) arising under 

tensile and compressive loading. Four functions 

𝑓𝑡 , 𝑓𝑐, 𝐷𝑡, 𝐷𝑐, either expressed in terms of 𝜅𝑡, 𝜅𝑐 

or directly in terms of maximum and minimum 

plastic strains 𝜀𝐼
𝑝, 𝜀𝐼𝐼𝐼

𝑝
 must be supplied, as input 

material data to the CDP model. 

Quantities 𝑔𝑡
𝑝𝑓

 and 𝑔𝑐
𝑝𝑓

 are the dissipated 

energy densities by plastic deformations, i.e. 

the areas underneath the complete stress-plastic 

strain curves, in uniaxial tension and in uniaxial 

compression, respectively. The corresponding 

overall dissipated energy densities during the 

entire process of microcracking (plasticity plus 

stiffness degradation) are herein denoted by 𝑔𝑡
𝑓
 

and 𝑔𝑐
𝑓
; such dissipated energy densities are 

known to depend on the size of the localization 

zone, to maintain the objectivity of the 

constitutive evolution within the softening 

regime. Because the capacity for the dissipated 

energy per unit volume cannot be given as a 

material property, 𝑔𝜄
𝑓
 (𝜄 = 𝑡, 𝑐) should be 

derived from other known material properties 
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such as the fracture energy. Assuming that the 

fracture energy in the uniaxial tensile state (𝐺𝑡
𝑓
) 

and its counterpart in the uniaxial compressive 

state (𝐺𝑐
𝑓
) are given as material properties, each 

𝑔𝜄
𝑓
 is equal to the corresponding fracture energy 

normalized by the localization zone size 𝑙𝜄
𝑐ℎ, 

also referred to as the material characteristic 

length or crack band width (Bažant and Oh, 

1983 [3]), which leads to 𝑔𝜄
𝑓

= 𝐺𝜄
𝑓

𝑙𝜄
𝑐ℎ⁄ . In FEM 

analysis, the material characteristic lengths may 

be substituted by element characteristic 

length 𝑙𝑒, toward a fracture-energy based 

regularization. For the present study, carried out 

at the material point level, the value of 𝑙𝑒 is 

immaterial and, thus, is set equal to unity. 

Eqs. (1f) are the Kuhn-Tucker (KT) 

conditions expressing the loading/unloading 

criterion at the yield limit (𝑓 = 0). Isotropic 

yield/failure function 𝑓, which limits the 

current admissible stress states (𝑓 ≤ 0, �̇�𝑓 = 0) 

and evolves with the loading process, assumes 

the following form:  

𝑓(�̅�𝑖𝑗, 𝜅𝜄) =
√3𝐽2̅ + 𝛼𝐼1̅ + 𝛽(𝜅𝜄)�̅�𝐼

1 − 𝛼
− 𝑓�̅�(𝜅𝑐); (6) 

where dimensionless coefficient 

𝛽(𝜅𝜄) = {
(1 − 𝛼)

𝑓�̅�(𝜅𝑐)

𝑓�̅�(𝜅𝑡)
− (1 + 𝛼) �̅�𝐼 ≥ 0

𝛾 �̅�𝐼 ≤ 0

; (7) 

varies through the loading history, 

𝑓�̅� = 𝑓𝑡 (1 − 𝐷𝑡)⁄  and 𝑓�̅� = 𝑓𝑐 (1 − 𝐷𝑐)⁄  are the 

tensile and compressive strengths of the intact 

material, respectively, whereas 𝛼, 𝛾 are two 

characteristic parameters affecting the shape 

of 𝑓. 

Hence, the plastic part of Lee-Fenves’ CDP 

model is based on the effective stress and is 

defined by the yield function, the non-

associated flow rule, the evolution law for the 

hardening variables and the loading-unloading 

conditions. Damage is directly predicted by 

cumulated plastic deformations through 

imposed functions 𝐷𝑡(𝜅𝑡) and 𝐷𝑐(𝜅𝑐). This 

implies that stiffness degradation cannot occur 

independently from plastic deformation 

(single-dissipative material [19]), as also 

assumed by other concrete constitutive models 

(e.g. [14]). Thus, the proper framework for the 

CDP model is that of elastoplastic 

coupling ([9],[12]).  

2.2 Strain-induced anisotropy of the CDP 
model  

In the undamaged state, concrete is assumed 

to be isotropic and linear elastic, and the 

corresponding elastic stiffness tensor is given 

by Eq. (3). After inelastic phenomena (linked to 

plastic strains and stiffness degradation) have 

occurred, either in tension or in compression, 

the material response is ruled by the following 

stress-strain law 

𝜎𝑖𝑗 = [1 − 𝑟(�̅�𝑖𝑗)𝐷𝑡](1 − 𝐷𝑐)𝐸𝑖𝑗𝑘𝑙
0 𝜀𝑘𝑙

𝑒 . (8) 

Moreover, the spectral representations of 

elastic strain and effective stress tensors: 

𝜀𝑖𝑗
𝑒 = ∑ 𝜀𝐾

𝑒 �̂�𝑖
𝐾�̂�𝑗

𝐾

3

𝐾=1

; (9a) 

�̅�𝑖𝑗 = ∑ �̅�𝐾�̂�𝑖
𝐾�̂�𝑗

𝐾

3

𝐾=1

,   �̅�𝐾 = 𝜆0𝜀𝑖𝑖
𝑒 + 2𝐺0𝜀𝐾

𝑒 ; (9b) 

show that 𝜎𝑖𝑗 and 𝜀𝑖𝑗
𝑒  are coaxial due to the 

isotropic nature of 𝐸𝑖𝑗𝑘𝑙
0 , �̂�𝑖

𝐾 being the common 

principal directions. Substitution of Eqs. (9) 

into Eq. (8) leads to the following spectral 

decomposition of the nominal stress tensor: 

𝜎𝑖𝑗 = ∑[1 − �̂�(𝜀𝑖𝑗
𝑒 )𝐷𝑡](1 − 𝐷𝑐)�̅�𝐾

3

𝐾=1

�̂�𝑖
𝐾�̂�𝑗

𝐾; (10) 

where 

�̂�(𝜀𝑖𝑗
𝑒 ) = {

0 if 𝜀𝑖𝑗
𝑒 = 0

∑ ⟨𝜆0𝜀𝑖𝑖
𝑒 + 2𝐺0𝜀𝐾

𝑒 ⟩3
𝐾=1

∑ |𝜆0𝜀𝑖𝑖
𝑒 + 2𝐺0𝜀𝐾

𝑒 |3
𝐾=1

 otherwise
; (11) 

is weight function 𝑟(𝜎𝑖𝑗) expressed in terms of 

the principal values of the elastic strain tensor.  

Previous Eq. (10) states that the principal 

values of nominal stress 𝜎𝑖𝑗 are piecewise-

smooth invariant functions of the principal 

values of 𝜀𝑖𝑗
𝑒 . Then, according to a known 

theorem for elastic (or Cauchy elastic) 

materials [15], the nominal stress is an isotropic 

function of the elastic strain. Hence, 𝜎𝑖𝑗 is 

always coaxial to 𝜀𝑖𝑗
𝑒 , as much as 𝜎𝑖𝑗. No strain-

induced anisotropy should then be observed, in 
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constrast with the rotating crack model [21]. 

Therefore, stiffness degradation cannot induce 

any anisotropy in the response of the CDP 

model. In other words, when plastic strains are 

negligible with respect to total strains, such that 

𝜀𝑖𝑗 ≈ 𝜀𝑖𝑗
𝑒 , the material behaviour is isotropic. 

The only source of induced anisotropy of the 

CDP model at the local level is linked to the 

development of plastic strains, which is ruled 

by the effective stress path and by dilatancy. 

These theoretical statements are confirmed by 

numerical simulations of Willam’s test 

illustrated in ensuing Section 3. However, the 

local isotropy of the CDP secant stiffness 

should not be viewed as a limitation, in that 

global anisotropy experienced at the structural 

level as a consequence of localized cracking 

may still locally be represented by an isotropic 

model: a crack would then be interpreted as the 

geometrical locus of isotropically damaged 

points/elements [16]. 

3 CONSTITUTIVE RESPONSE OF THE 
CDP MODEL TO WILLAM’S TEST  

In this section, the concrete tensile-

dominated response with prescribed rotating 

principal axes of strain, as predicted by the CDP 

model, is numerically evaluated with the 

purpose of assessing its performance in terms 

of plastic strain-induced anisotropy. Assuming 

a homogeneous strain field, the constitutive 

response within the concrete specimen is 

interpreted as a numerical experiment at the 

material point level. Thus, reference is made to 

a single plane four-node finite element, with a 

single integration point, under plane stress 

conditions (no confinement in the out-of-plane 

direction). The element (or material point) is 

subjected to a nonproportional, strain driven 

loading with rotating principal directions of 

strains, as per the so-called Willam’s test, 

originally devised by Willam et al. [21], to 

compare fixed vs. rotating crack models with 

plastic softening models. This numerical test 

has become widely used to verify and compare 

constitutive models for cracking and 

damage [7]. 

Initially, the continuum is subjected to 

tensile straining in the 𝑥1-direction accompa-

nied by transverse Poisson’s contraction in the 

𝑥2-direction, i.e. 𝜀1̇1: 𝜀2̇2: 2𝜀1̇2 = 1: −𝜈0: 0. 

Immediately after cracking initiation, a switch 

is made to combined biaxial extension and 

shear deformation, according to scheduled 

ratios 𝜀1̇1: 𝜀2̇2: 2𝜀1̇2 = 0.5: 0.75: 1, as further 

suggested in [20] and later adopted, e.g. in [6], 

[14],[16],[22]. Such imposed strains force the 

continuous rotation of the principal strain 

directions after crack nucleation, as later shown 

in Figure 3c. The strain rotation rate is faster at 

the beginning and progressively slower later on, 

with a final asymptotic rotation value of about 

52.02°.  

In the numerical simulations, performed 

within ABAQUS [1], coordinate axes 𝑥1 and 𝑥2 

are referred to 𝑥 and 𝑦, respectively. The 

constitutive analysis requires pertinent small 

load increments, to minimize computational 

errors. The backward Euler scheme is adopted 

to solve for the stress response under imposed 

strain increments. 

3.1 Validation of the implemented Willam’s 
test 

With the purposes of assessing the 

consistency of the present constitutive 

implementation of Willam’s test, comparison is 

first made to the results recently reported by 

Wosatko et al. [22], who studied, among other 

constitutive models, the performance of the 

CDP model for different values of CDP 

dilatancy angle 𝜓𝑑
′ = tan−1 𝛼𝑑

′ , mainly by 

therein neglecting the effects of damage. 

Thereby, the concrete response also 

incorporating the effects of damage 

function 𝐷𝑡(𝜀𝐼
𝑖) was reported for a single value 

of dilatancy angle (𝜓𝑑
′ = 25°). Herein, such 

latter case and the pure elastoplastic response 

assuming a rather high value of dilatancy angle 

(𝜓𝑑
′ = 55°) have been considered for the 

validation purposes.  

In Figure 1, the resulting in-plane cartesian 

stress components, 𝜎𝑥𝑥 , 𝜎𝑦𝑦, 𝜎𝑥𝑦, and the 

resulting principal stresses, 𝜎𝐼 , 𝜎𝐼𝐼, are plotted 

against the prescribed strain along the 𝑥-axis, 

𝜀𝑥𝑥, which is taken as a reference driving 

variable in all subsequent plots. The present 

outcomes appear in good agreement with those 
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reported in [22], for all the stress components, 

despite the limited accuracy that can be 

achieved by graphically tracing their plots (both 

input data and relevant results). The values of 

𝜎𝑥𝑥 and 𝜎𝐼 attain at most a value equal to 

concrete uniaxial tensile strength 

𝑓𝑡0 = 3.0 MPa, at the end of the first phase of 

Willam’s test. Then, stresses 𝜎𝑥𝑥 and 𝜎𝐼 

decrease by softening, in the second phase, but 

more rapidly than for the uniaxial curve, as an 

effect of the mixed stress-strain conditions. 

Only when damage is active (Figure 1a), all 

stress components approach zero at the final 

stage as 𝐷𝑡 → 1. In fact, the complete depletion 

of material integrity driven by damage also 

releases any residual stress associated to plastic 

strains. This in turn destroys any form of 

anisotropy induced by cumulated plastic 

strains, so that the material behavior returns to 

isotropy, in the limit of very large strains. 

In the absence of damage and for a rather 

high value of dilatancy angle of the CDP model 

(Figure 1b), residual stresses arise at the end of 

the second phase of the test, as a result of non-

zero effective stresses induced by choked in-

plane dilatant plastic expansion predicted by 

Eq. (5). This plastic flow clearly reflects the 

pure plastic nature of the modelled concrete 

behaviour. Thus, minor principal stress 𝜎𝐼𝐼 

becomes negative, as 𝜎𝐼 decreases to mantain 

an almost costant gap with 𝜎𝐼𝐼, equal to twice 

the shear stress, as determined by the residual 

friction angle. 

By zooming in Figure 1b around 𝜀𝑥𝑥 = 𝜀𝑡0, 

where 𝜀𝑡0 = 𝑓𝑡0 𝐸0⁄ ≈ 0.0001 is the elastic 

strain at tensile stress peak, it is shown that both 

stresses 𝜎𝑦𝑦 and 𝜎𝐼𝐼 become negative at the very 

beginning of the second phase of Willam’s test, 

just before starting growing towards positive 

values as vertical strain 𝜀𝑦𝑦 increases, because 

of dilatancy. This feature of the model response 

was likely not apparent in [22], and is herein 

observed by a fine integration step within the 

constitutive driver. 

3.2 Parametric analyses 

To verify and extend the above-mentioned 

considerations and to accurately investigate the 

effect of damage and dilatancy on the CDP 

model response during Willam’s test, a 

parametric study can be carried out, at this 

stage, whose input and results are discussed in 

following Sections 3.2.1 and 3.2.2. The 

investigation is focused on the possibilities to 

capture rotations of the principal directions of 

stress beyond cracking. The assumed 

mechanical properties of concrete needed by 

the CDP model during the present parametric 

analysis are first described next. 

3.2.1 Definition and parametrization of the 
constitutive law 

The constitutive CDP model described in 

Section 2.1 allows to formulate a variety of 

material behaviors by suitably varying the post-

peak strength and damage functions 

(𝑓𝑡 , 𝑓𝑐 , 𝐷𝑡, 𝐷𝑐) and the underlying characteristic 

parameters (𝐸0, 𝜈0, 𝛼, 𝛾, 𝛼𝑑
′ ). 

For tension and tension-shear dominated 

problems, the concrete nonlinear response in 

compression is not mobilized. Thus, to 

minimize complexity, an adequate form of the 

CDP model can be achieved by defining 

functions 𝑓𝑡(𝜀𝐼
𝑖) and 𝐷𝑡(𝜀𝐼

𝑖) governing the 

concrete inelastic response under tensile 

dominated stress states. The exponential 

softening functional form [4] is herein adopted, 

for describing the evolution of 𝑓𝑡(𝜀𝐼
𝑖), i.e.: 

𝑓𝑡(𝜀𝐼
𝑖) = 𝑓𝑡0 exp (−

𝑓𝑡0

𝑔𝑡
𝑓

𝜀𝐼
𝑖) ; (12) 

showing that exponential softening is 

completely specified by tensile strenght 𝑓𝑡0 of 

the undamaged concrete and specific fracture 

energy in tension 𝑔𝑡
𝑓
. The integration over 

inelastic strain 𝜀𝐼
𝑖 of Eq. (12), with 𝜀𝐼

𝑖 ranging 

from 0 to infinity, is exactly equal to 𝑔𝑡
𝑓
, which 

clearly gives its meaning. The fact that 𝑔𝑡
𝑓
 is 

one of the given material parameters, is also 

rather convenient for possibly implementing 

fracture-energy regularization procedures at the 

finite element level and structural scale (an 

aspect herein not inquired). 

In the CDP model, total inelastic strains are 

the sum of plastic strains and irreversible 

increments of elastic strains prompted by 

damage. Then, a simple model for plastic 
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microcracking is obtained by further assuming 

that the plastic strain under uniaxial tension is a 

constant fraction of the total inelastic strain, 

say, 𝜀𝐼
𝑝 = 𝛼𝑝𝜀𝐼

𝑖, where 0 < 𝛼𝑝 ≤ 1 is taken as 

a material constant [17]. 

Accordingly, damage evolution function 

𝐷𝑡(𝜀𝐼
𝑖) follows from plastic to inelastic strain 

ratio 𝛼𝑝 and from the expression of 𝑓𝑡(𝜀𝐼
𝑖) 

given in Eq. (12): 

𝜀𝐼
𝑖 = 𝜀𝐼

𝑝
+ 𝜀𝐼

𝑒𝑑 = 𝛼𝑝𝜀𝐼
𝑖 +

𝐷𝑡(𝜀𝐼
𝑖)

1 − 𝐷𝑡(𝜀𝐼
𝑖)

𝑓𝑡(𝜀𝐼
𝑖)

𝐸0
; 

   → 𝐷𝑡(𝜀𝐼
𝑖) = [1 +

𝑓𝑡(𝜀𝐼
𝑖)

(1 − 𝛼𝑝)𝐸0𝜀𝐼
𝑖
]

−1

. 

(13) 

Both functions 𝑓𝑡(𝜀𝐼
𝑖) and 𝐷𝑡(𝜀𝐼

𝑖) are 

depicted in Figure 2, considering an undama-

ged Young’s modulus of 𝐸0 = 21500 𝑓𝑡0, as 

provided by the CEB-FIP Model Code (1990) 

formula [13], for a typical ratio of compressive 

strength/tensile strength (𝑓𝑐0 𝑓𝑡0⁄ ) equal to 10. 

The initial compressive strength 𝑓𝑐0 = 10𝑓𝑡0 is 

kept fixed during the entire analysis due to its 

negligible effect during Willam’s test. 

Poisson’s ratio 𝜈0 is assumed equal to 0.2.  

Damage evolution function 𝐷𝑡(𝜀𝐼
𝑖) is plotted 

in Figure 2b for two distinct values of plastic to 

inelastic strain ratio 𝛼𝑝. One is quite small 

(𝛼𝑝 = 0.01), but greater than zero (inelasticity 

of the CDP model is led by plastic strains, 

which cannot be suppressed), indicating a 

nearly isotropic damage model; the other is 

placed right in the middle of the range of 𝛼𝑝 

(𝛼𝑝 = 0.5), pointing out to a coupled model in 

which both stiffness degradation and plastic 

flow equally contribute to the total inelastic 

strains (𝛼𝑝 = 0.5). Upper limit 𝛼𝑝 = 1, 

denoting a CDP model degenerating to a pure 

softening elastoplastic material formulation 

(with no damage), already addressed in [22], is 

not herein reconsidered. 

The remaining parameters of the CDP model 

are the eccentricity of the plastic potential 

(𝑒 = 0.1) and the shape parameters of the yield 

function, namely 𝛼 = 0.121, corresponding to a 

ratio of the biaxial to the uniaxial compressive 

strength of 1.16, and 𝛾 = 3, which is obtained 

by setting the ratio between the radii of the 

tensile and compressive meridians on the 

deviatoric plane equal to the standard value 

of 2/3. 

3.2.2 Results 

A graphical representation of the normalized 

constitutive response of the CDP model for all 

the in-plane stress components, both cartesian 

and principal, gained from the numerical 

simulation of Willam’s test is provided in 

Figure 3 and in Figure 4, for the two selected 

values of plastic to inelastic strain ratio 𝛼𝑝 and 

the three assumed values of CDP dilatancy 

angle 𝜓𝑑
′ . The considered range of CDP 

dilatancy angle, going from 15° to 55°, shall 

encompass the almost entire range of expected 

experimental values for concrete.  

For 𝛼𝑝 = 0.01, the stress response is 

consistently unaffected by the dilatancy angle 

(Figure 3a-b), since plastic strains are kept to a 

minimum and the overall inelastic deformation 

is attributed to isotropic stiffness degradation. 

As expected from the underlying isotropy 

argument, the principal stress directions 

coincide with the prescribed principal strain 

directions, i.e. stress-strain axes co-rotate, 

independently of 𝜓𝑑
′  (Figure 3c). Only at rather 

large strains (e.g. 𝜀𝑥𝑥 > 6𝜀𝑡0 = 6 𝑓𝑡0 𝐸0⁄ ) some 

slight deviation from coaxiality can be 

appreciated, due to the development of small 

plastic strains. Hence, numerical outcomes 

corroborate the theoretical statements of 

preceding Section 2.2, in that no anisotropy is 

manifested by the constitutive model, whenever 

plastic strains remain marginal. 

When non-negligible plastic strains are 

accounted for (𝛼𝑝 = 0.5), during the second 

phase of Willam’s test both 𝜎𝑦𝑦 and 𝜎𝑥𝑦 stress 

components increase with respect to those 

predicted by the “pure” damage model 

(𝛼𝑝 = 0.01), because of the damped stiffness 

degradation, attested by Figure 2b. The 

increase of 𝜎𝑦𝑦 is such that, at some point, it 

overcomes 𝜎𝑥𝑥 (Figure 4a-b), a feature also 

revealed by other constitutive models tried 

along Willam’s test ([6],[14]).  

As concrete dilatancy rises, for fixed total 

strains, plastic strains growth, to the detriment 

of elastic strains, thus reducing 𝜎𝑦𝑦 and 𝜎𝐼𝐼; on 
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the other hand, shear stress component 𝜎𝑥𝑦 

benefits from such an additional compressive 

strength promoted by dilatancy.  

The plot of the angle of rotation of principal 

stress directions (Figure 4c) substantially 

differs from that of the “pure” isotropic damage 

one (Figure 3c), revealing that plastic strain-

induced anisotropy accelerates the rotation of 

the principal stresses, almost independently 

from the value of the CDP dilatancy angle. The 

positive values of plastic strains (opening 

cracks), as predicted by the normal to the DP 

plastic potential, explain why stress increments 

over-rotate with respect to strain increments. 

All rotations trends are bounded by asymptotic 

strain angle 52.02° and never exceed that value, 

as instead indicated by different anisotropic 

damage modes ([5],[6],[16]).  

From Figure 4c, it is apparent that the 

rotation rate of principal stress components is 

drastically reduced around 𝜀𝑥𝑥 = 3𝜀𝑡0, and 

gradually converges towards the final 

asymptotic value of the strain rotation. In fact, 

as an important remark, as the prescribed strains 

increase, damage withdraws plastic strain-

induced-anisotropy, so that the material 

behaviour tends to become again fully 

isotropic, in the limit of very large strains. 

4 CONCLUSIONS  

In the present paper, the quite popular Lee-

Fenves’ CDP constitutive model (available 

within the ABAQUS platform) has been 

scrutinized to provide useful insights on its 

current abilities and limitations in the modelling 

of the nonlinear behaviour of quasi-brittle 

materials, such as concrete, under rather 

complex loading paths. In particular, this 

investigation has been set with the goal of 

investigating the conditions under which a 

anisotropic behaviour may be predicted under 

multiaxial stress states. The following main 

points have been targeted and recorded: 

• The conditions under which a anisotropic 

behaviour may be predicted by the CDP 

model under multiaxial stress states have 

been investigated through an analysis of the 

constitutive equations of the model, 

highlighting that the only source of induced 

anisotropy at the local level arises from the 

development of plastic strains, which also 

drive all the inelastic phenomena reproduced 

by the model. Plastic strains are ruled by the 

effective stress path and by dilatancy.  

• The formulation statements have been 

confirmed by numerical simulations of the 

CDP model response to a peculiar non-radial 

loading path (Willam’s test). The analyses 

have been implemented and performed at a 

constitutive-driver level within ABAQUS. 

• A consistent validation of the present 

implementation has been achieved, based on 

results of a couple of Willam’s tests recently 

reported in [22], for the comparison of 

different models. The latter have been 

adopted as a benchmark reference, for the 

numerical solution, with arising rather close 

matchings and commented relevant 

highlighted numerical and physical findings, 

which are per se interesting, for the 

interpretation of the CDP model capabilities.  

• A parametrization of prescribed tensile 

damage evolution function 𝐷𝑡(𝜀𝐼
𝑖) in terms 

of corresponding post-peak strength 

function 𝑓𝑡(𝜀𝐼
𝑖) has been achieved, through a 

single suitable scalar parameter, i.e. plastic 

to inelastic strain ratio 𝛼𝑝, along the line of 

Ortiz’s proposal [17].  

• Non-dimensional curves of both cartesian 

and principal stress components have been 

presented, for two values of 𝛼𝑝 and three 

values of CDP dilatancy angle 𝜓𝑑
′ , showing 

several important and characteristic features 

of the CDP constitutive response. Namely: 

▪ the results of the Willam’s test can result 

rather different, even if a source identical 

behaviour in the uniaxial tension 

softening curve is adopted, by varying 

𝛼𝑝; dilatancy angle 𝜓𝑑
′ , instead, displays 

a minor effect on the stress response, 

except for the case in which plasticity is 

overriding stiffness degradation (slight or 

no damage); 

▪ when plastic strains are overall negligible 

(worked case of 𝛼𝑝 = 0.01), though still 

driving the inelastic response, stress-

strain axes co-rotate, independently 
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of 𝜓𝑑
′ ; as opposed, when plastic strains 

are accounted for (worked case of 

𝛼𝑝 = 0.5), plastic strain-induced aniso-

tropy appears, so that stress increments 

over-rotate with respect to strain incre-

ments; 

▪ in the presence of stiffness degradation, 

damage further withdraws plastic strain-

induced-anisotropy at quite large strains, 

over the softening range, so that the 

material behavior returns fully isotropic, 

in the limit of very large strains. 

 

Further investigations on features and 

outcomes of the CDP model, for both 

theoretical and numerical scenarios, at the 

constitutive scale, and possibly at the structural 

scale, may elsewhere be reported, where more 

room shall become available. 
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(a) 

  
(b) 

  
Figure 1: Comparison of stress components obtained from Willam’s test with those reported by Wosatko et al. [22]: 

(a) elastoplasticity coupled with damage (𝜓𝑑
′ = 25°, 𝐷𝑡(𝜀𝐼

𝑖) ≠ 0) and (b) pure elastoplastic behaviour (𝜓𝑑
′ = 55°, 

𝐷𝑡(𝜀𝐼
𝑖) = 0); first column: cartesian stress components; second column: principal stress components. 
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(a) 

 

(b) 

 

Figure 2: Evolution of adopted concrete (a) tensile strength and (b) tensile damage as a function of major principal 

inelastic strain 

(a) 𝝍𝒅
′ = 15° 

 

(b) 𝝍𝒅
′ = 55° 

 

(c) Rotation 

 

Figure 3: Results of CDP model subjected to Willam’s test for 𝛼𝑝 = 0.01: stress components calculated for 

(a) 𝜓𝑑
′ = 15° and (b) 𝜓𝑑

′ = 55°; (c) imposed rotation of major principal strain axis and rotation of major principal stress 

axes for different values of 𝜓𝑑
′  

(a) 𝝍𝒅
′ = 15° 

 

(b) 𝝍𝒅
′ = 55° 

 

(c) Rotation 

 

Figure 4: Results of CDP model subjected to Willam’s test for 𝛼𝑝 = 0.5: stress components calculated for  

(a) 𝜓𝑑
′ = 15° and (b) 𝜓𝑑

′ = 55°; (c) imposed rotation of major principal strain axis and rotation of major principal stress 

axes for different values of 𝜓𝑑
′  


