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Abstract. Concrete’s complex heterogeneous internal structure leads to an involved quasi-brittle
response where a progressive loss of material integrity is observed. Additionally, in real-life appli-
cations, concrete structures are under loading conditions resulting in complex mixed-mode fracture
patterns. Hence, prediction of crack behavior in concrete structures is a challenging task. Owing to
the high costs of experimental testing, computational modeling has emerged as a viable alternative for
studying concrete fracture. The phase field approach has proven to be a well-established formulation
for simulating different fracture phenomena, where crack propagation is tracked implicitly using an
additional independent field that diffuses the damage. Previously we introduced a phase field model
investigating various crack driving forces considering only the elastic response of concrete. Following
a thermodynamically consistent approach, we extend that model to an elastoplastic formulation which
can accurately capture the quasi-brittle response of concrete, including the pressure dependency of
strength. We formulate the equations within a generalized continuum framework, which accounts for
the microstructure of the solid, naturally captures the size effect of materials, and addresses stability
issues arising from complex plastic formulations. We demonstrate that employing this framework
captures the internal microstructure of concrete by incorporating an internal length scale, which char-
acterizes the microstructural fracture response and represents the finite size of the fracture process
zone ahead of the crack tip. A comparison with experimental results confirms the good performance
of the model in capturing mixed-mode I-II or I-III failures of concrete.

1 INTRODUCTION

The prediction of fracture nucleation and
propagation, one of the most prevalent fail-
ure mechanisms, is critically important for en-
gineering applications to prevent catastrophic

structural failures. Among construction mate-
rials, concrete exhibits a complex fracture be-
havior due to its heterogeneous composition of
cement mortar and grains. This heterogene-
ity gives rise to a quasi-brittle response, where
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material integrity deteriorates gradually rather
than the abrupt loss of load-carrying capacity
observed in brittle materials. Additonaly, in
practical engineering, concrete structures are
frequently subjected to loading conditions that
produce complex mixed-mode fractures, such
as mode I-II (combined opening and sliding)
or mode I-III (combined opening and tearing)
patterns [1]. Consequently, predicting failure
in concrete structures presents a considerable
challenge.

Owing to the high costs of experimental test-
ing, computational modeling has emerged as
a viable alternative for studying concrete frac-
ture. Among the various fracture modeling
techniques, the phase field approach has gained
significant attraction over the past two decades
due to its inherent ability to simulate crack nu-
cleation, propagation, and bifurcation without
requiring ad hoc criteria. In phase field mod-
els, the crack surface evolution is described im-
plicitly via an order parameter (the crack phase
field), which transitions smoothly between in-
tact and fully cracked states. This approach
contrasts with discrete crack models, where
cracks are explicitly represented by introducing
displacement discontinuities into the kinematic
descriptions [2–4].

The phase field method in mechanics was pi-
oneered by Francfort and Marigo [5], who de-
veloped it based on the variational formulation
of Griffith’s theory for brittle fracture [6]. Later,
Bourdin et al. [7] introduced a numerical imple-
mentation by regularizing the formulation with
a length scale parameter. Since then, the phase
field approach has been extensively developed
and applied to a range of failure mechanisms,
including brittle fracture [8, 9], ductile fracture
[10, 11], and fracture in polymers [12, 13].

Most phase field models primarily address
the brittle behavior of solids, with only a lim-
ited number focusing on the quasi-brittle failure
commonly observed in concrete. Among these,
an even smaller subset addresses mixed-mode
fracture of concrete [14, 15].

To address this gap, we first present our ther-
modynamically consistent phase field model

tailored for the quasi-brittle fracture of concrete
[16]. The model, with a focus on capturing
mixed-mode failure patterns, features a straight-
forward formulation that implicitly integrates
various failure conditions within the frame-
work by deriving crack driving forces based
on widely used failure criteria. Specifically,
these criteria are incorporated into the gov-
erning equations through equivalent effective
stress measures that account for the stress state.
This approach captures the pressure-dependent
strength and the asymmetric response of con-
crete under tensile and compressive loads. A
general form of the equivalent effective stress
measure is proposed to unify the formulation,
enabling straightforward implementation into
a finite element framework. This unified ap-
proach not only facilitates the incorporation of
diverse failure criteria into the model but also
enables a systematic comparison of their per-
formance in predicting mixed-mode fracture in
concrete. Such comparisons are crucial, as dif-
ferent failure criteria yield varying responses
under identical loading conditions.

Next, we extend that model to an elastoplas-
tic formulation which can accurately capture
the quasi-brittle response of concrete. We for-
mulate the equations within a generalized con-
tinuum framework, which accounts for the mi-
crostructure of the solid, naturally captures the
size effect of materials, and addresses stabil-
ity issues arising from complex plastic formu-
lations. This framework can capture the inter-
nal microstructure of concrete by incorporat-
ing an internal length scale, which character-
izes the microstructural fracture response and
represents the finite size of the fracture pro-
cess zone ahead of the crack tip. A compari-
son with experimental results also confirms the
good performance of the model in capturing
mixed-mode I-II or I-III failures of concrete.

The outline of the paper is as follows. Sec-
tion 2 introduces a purely geometric approach
to damage modeling, where an evolution equa-
tion equates the rate of crack formation with
the power of a crack driving force. In this
section, a unified formulation of the equiva-
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lent effective stress measure is proposed, cap-
turing a range of failure criteria. Section 3
extends the model to an elastoplastic microp-
olar continuum, providing a robust framework
to accurately represent the quasi-brittle behav-
ior of concrete while accounting for concrete’s
microstructure. Section 4 presents simulations
of mixed-mode fracture in concrete, including
a comparison of numerical load–displacement
curves and predicted crack paths against exper-
imental data. Finally, conclusions are summa-
rized in Section 5.

2 GENERALIZED DRIVING FORCE
FOR THE DAMAGE FIELD

2.1 Phase field approximation
To model the evolution of cracks within a

continuum, a time-dependent parameter d ∈
[0, 1], referred to as the crack phase field, is in-
troduced. This parameter differentiates between
an intact material point (d = 0) and a fully dam-
aged one (d = 1). Based on the physical prin-
ciple that cracks evolve irreversibly, the phase
field satisfies the constraint ḋ ≥ 0.

The introduction of the crack phase field en-
ables the representation of a sharp crack sur-
face using a diffuse (regularized) approximation
[8, 17], expressed as∫

S
dS ≈

∫
V

ΓdV , (1)

where Γ is the crack surface density function
[18]. This function is defined in terms of the
crack phase field d, its gradient d,i, and the
phase field length scale ld

Γ(d, d,i; ld) =
1

c0

(
1

ld
w(d) + ld d,i d,i

)
. (2)

Here, w(d) is the geometric crack function,
which governs the homogeneous and local evo-
lution of the crack phase field [19], while ld
acts as a regularization parameter controlling
the width of the diffuse crack. The parameter
c0 serves as a scaling factor, ensuring conver-
gence to a sharp crack surface as ld approaches
zero [19].

2.2 Phase field equation
For the crack evolution equation, the purely

geometric approach outlined in [20, 21] is em-
ployed. An evolution equation that equalizes
the rate of crack formation with the power of
a crack driving force is postulated in the form

d

dt

(∫
V

ΓdV

)
= H

(
d, ḋ,Y

)
. (3)

In this equation, H is a crack driving func-
tional depending on the crack phase field, its
rate, and a local crack driving force Y that ac-
counts for the history of the solid. As discussed
in [20], this general equation allows for differ-
ent driving forces to affect the evolution of dam-
age, enriching the framework to account for var-
ious phenomena such as brittle cracking, ductile
fracture, or asymmetric fracture responses in
tension and compression, which are important
characteristics for modeling quasi-brittle mate-
rials like concrete.

Similar to [20], we write the crack driving
functional in (3) as a power expression in the
form

H
(
d, ḋ,Y

)
=

1

Gc

∫
V

(−g′(d)Y −R) ḋ dV ,
(4)

where R is a function of ḋ, accounting for the
viscous crack resistance effects, and Gc is the
critical fracture energy, a material parameter re-
flecting the resistance of the body to cracking.
Furthermore, g′(d) = dg

dd
denotes the derivative

of the degradation function g(d) with respect to
the crack phase field d. The degradation func-
tion, reflects the dependency of the strain en-
ergy on the phase field parameter and models
the loss of stiffness with the evolution of dam-
age.

After some calculations, the global crack
surface evolution equation, induces a local
equation in the form

2Gc

c0
ld d,ii =

Gc

c0 ld
w′ + g′Y . (5)
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2.3 Constitutive relations
Following [19], the crack surface density

function Γ and the degradation function g are
chosen such that, in the 1D case, for a vanishing
phase field length scale parameter ld, the result-
ing mode I behavior of the framework is equiv-
alent to a cohesive zone model, allowing for the
incorporation of different softening laws.

Hence, geometric crack function to the form

w(d) = 2d− d2 , (6)

and a degradation function in the general form

g(d) =
(1− d)p

(1− d)p +Q(d)
, (7)

with

Q(d) = b1 d
(
1 + b2 d+ b2 b3 d

2
)
> 0 , (8)

are used. Considering the Cornelissen [22] soft-
ening law for normal concrete, the optimal cal-
ibrated parameters are given as [19]

p = 2, b1 =
4

π ld

E Gc

f 2
t

,

b2 = 1.3868, b3 = 0.6567 ,

(9)

with E as the Young’s modulus and ft as the
tensile strength.

Following the common phase field formula-
tions [8], the local crack driving force can be
taken as

Y = Ψe . (10)

This indicates that the damage is driven by
the entire elastic strain energy Ψe, with no dis-
tinction between different energy contributions.
Accordingly, the proposed model does not dif-
ferentiate between the tensile and compressive
contributions of Ψe. As a result, the formula-
tion leads to symmetric fracture responses un-
der both tensile and compressive loads. How-
ever, this behavior might not be realistic for
quasi-brittle materials such as concrete, where
the compressive strength is an order of magni-
tude higher than the tensile strength.

To address this issue, various decomposi-
tions of the strain energy have been introduced

in phase-field fracture models. For instance,
Amor et al. [23] proposed a spherical and de-
viatoric decomposition of the strain energy, and
Miehe et al. [18] developed a mechanism to
differentiate crack responses under tensile and
compressive loads based on the spectral decom-
position of the strain tensor.

Although phase field formulations based on
these energy decompositions effectively predict
the fracture response of concrete, they often in-
volve complex models that require explicit con-
sideration of various cracking modes [24, 25].
Accordingly, a more advanced driving force in-
spired by the works of [19, 26] on quasi-brittle
materials, is assumed as

Y =
1

2E
⟨σ̄eq⟩2 , (11)

with σ̄eq as the equivalent effective stress, a
scalar quantity that accounts for the stress state
at a material point. The incorporation of the
equivalent effective stress provides a simple yet
effective framework capable of capturing the
complex fracture response of concrete and driv-
ing the evolution of damage accordingly.

Following our previous work [16], the equiv-
alent effective stress is written as

σ̄eq =c1 ρ r (θ, e) + c2 ζ+√
(c1 ρ r (θ, e) + c2 ζ)

2 + c3 ρ2 ,
(12)

where ζ is the hydrostatic stress invariant, ρ is
the deviatoric stress invariant, θ is the deviatoric
polar angle, e is the eccentricity parameter that
describes the out-of-roundness of the deviatoric
trace, and r defines the shape of the yield sur-
face in the deviatoric section [27]. Moreover,
c1, c2, and c3 are constants given in Table 1,
required to derive specific equivalent effective
stresses based on the Rankine, Drucker-Prager,
modified von Mises, and the three-parameter
failure criteria.

This generalization not only facilitates a
straightforward implementation into a finite ele-
ment framework but also offers flexibility in se-
lecting the appropriate driving force for a given
experiment being simulated. For instance, if
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the structure undergoes tension-dominated fail-
ure, the Rankine equivalent effective stress may
be an appropriate choice. However, in scenar-
ios where the compressive strength of concrete

plays a significant role, an alternative driving
force should be selected to accurately capture
the material’s behavior.

Table 1: Parameters of the generalized form (12) for deriving specific equivalent effective stress measures. In these
equations, the parameter k = fc/ft is the ratio of the compressive strength fc to the tensile one ft.

Equivalent effective stress c1 c2 c3

Rankine 1
2
√
6

1
2
√
3

0

Drucker-Prager
√

3
8
k+1
2k

√
3
4

k−1
k 0

Modified von Mises 0
√
3
2

k−1
k

3
2k

Three-parameter
√
3(k2−1)e

2
√
2k2(e+1)

√
3(k2−1)e
2k2(e+1)

3
2k2

3 EXTENSION TO GENERALIZED
CONTINUA

So far the material behavior of concrete was
modeled within an elastic framework, captur-
ing the onset and propagation of cracks effec-
tively for certain applications. However, con-
crete exhibits a complex mechanical response
that includes significant inelastic deformations
and microstructural effects, particularly under
high-stress conditions or in post-peak regimes.
To address these limitations, we aim to extend
our formulation to include plasticity and ac-
count for the microstructure of concrete. For
this purpose, we employ a generalized contin-
uum formulation, specifically the micropolar
theory [28].

The micropolar formulation offers several
advantages for modeling quasi-brittle materi-
als like concrete. It introduces additional de-
grees of freedom, such as rotations of microele-
ments, and incorporates couple stresses, which
enable the simulation of microstructural effects
that cannot be captured by classical continuum
theories. This approach is particularly benefi-

cial for describing phenomena such as strain lo-
calization, which is heavily influenced by the
internal structure of the material, and for miti-
gating mesh sensitivity issues in numerical sim-
ulations.

A micropolar continuum represents a contin-
uous collection of material points, where each
material point is defined by a displacement field
ui, as well as an additional microrotation vector
ϕi. This microrotation field characterizes the lo-
cal rotation of material points and is considered
an independent kinematic variable.

To extend the formulations defined in the
previous section, we use the generalized strain
measures. In a micropolar continuum, the strain
tensor εij is computed using both the displace-
ment field and the microrotation field, given by

εij = uj,i + ϵjikϕk , (13)

where ϵjik is the Levi-Civita permutation sym-
bol. Additionally, the spatial gradient of the mi-
crorotation field defines the wryness tensor γij
as

γij = ϕi,j . (14)
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To incorporate the plastic response of con-
crete, we adopt the formulation presented in
[29], with its extension to a micropolar frame-
work described in [30]. This approach accounts
for the non-symmetry of the stress tensor and
the presence of couple stresses.

For the phase-field formulation, we follow
the approach presented in [20], where a geo-
metric crack function w = d2 and a degrada-
tion function g = (1− d)2 are used. Moreover,
the power expression defined in Equation (4) is
reformulated as

H =
1

ld

∫
V

((1− d)Y) ḋ dV . (15)

For the micropolar formulation, we intro-
duce the local crack driving force as

Y =

{
0 if αp < 1

Eαp if αp ≥ 1 ,
(16)

with αp as the internal plastic variable. As
for E , it is a parameter related to the fracture
energy of concrete Gc, and is calibrated based
on the area under the load-displacement curve
for a mode-I test.

This specific form indicates that, in a mi-
cropolar continuum (under tension-dominated
cases), damage is primarily driven by plastic de-
formation.

4 NUMERICAL SIMULATIONS
To validate the proposed phase field model,

we conduct a numerical study of an experimen-
tal test focusing on the mixed-mode fracture of
concrete. First, we present the results using the
classical elastic formulation outlined in Section
2, followed by the same example analyzed us-
ing the micropolar extension introduced in Sec-
tion 3.

4.1 Single-edge notched specimen using the
classical formulation

We examine a single-edge notched concrete
beam subjected to an antisymmetric four-point
loading configuration using the classical elastic
formulation. As illustrated in figure 1, the beam

measures 440 mm × 100 mm × 100 mm and
features a vertical notch measuring 5 mm × 20
mm × 100 mm at the top center. Experimentally
observed by Schlangen [31], this loading setup
produces a curved crack path that initiates at the
right corner of the notch and propagates to the
right edge of the lower-right loading platen.

Figure 1: Geometry (in mm) and boundary conditions
of the single-edge notched beam, with the experimental
crack paths.

Figure 2: Computed and experimental load–CMSD
curves for the single-edge notched beam example using
various equivalent effective stresses.

For the numerical simulation, to reduce com-
putational costs, the specimen is modeled as a
3D body with a thickness of 5 mm and dis-
cretized using 8-node brick elements. The el-
ement size is set to 0.6 mm in regions where
crack propagation is expected. The loading and
support platens are represented as steel plates.
The load P is applied using an indirect displace-
ment control technique, monitoring the Crack
Mouth Sliding Displacement (CMSD), defined
as the relative vertical displacement between
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the notch faces at the top of the beam. For the
material parameters used refer to [16].

The predicted load-CMSD curves obtained
with each equivalent effective stress measure,
along with the experimental data, are shown in
figure 2. A good agreement is observed be-
tween the simulated and experimental results,
particularly in capturing the peak load for all
stress measures. However, the post-peak behav-
ior is underestimated in all cases, with the sim-

ulated load-carrying capacity degrading faster
and reaching its final value earlier than observed
experimentally.

The evolution of the crack phase field for
each equivalent effective stress measure is illus-
trated in figure 3. In all cases, the crack initiates
at the notch tip and propagates downwards to-
wards the lower-right loading plate, consistent
with experimental observations.

Figure 3: Evolution of damage using the (a) Rankine, (b) Drucker–Prager, (c) modified von Mises, and (d) three-parameter
equivalent effective stresses.

4.2 Single-edge notched specimen using the
micropolar formulation

Figure 4: Computed and experimental load–CMSD
curves using the micropolar formulation.

Now, we examine the same example using
the micropolar formulation. For the additional
material parameter, the value of parameter E
used in equation (16) was calibrated based on
Gc = 0.12 N/mm and is equal to 0.0011.

Figure 5: Final crack path using the micropolar formula-
tion.

Figures 4 and 5 present the predicted load-
CMSD curves and the predicted crack path, re-
spectively. A good agreement between the ex-
perimental observations and the simulated re-
sults is observed.

We observe that using a micropolar elasto-
plastic model with a simpler geometric crack
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function w = d2 and degradation function g =
(1 − d)2, instead of the more complex counter-
parts shown in equations (6) and (7) required in
our previous work, yields good results.

5 Conclusion
This work proposed a phase field framework

for predicting the quasi-brittle cracking of con-
crete, with a particular focus on mixed-mode
failure patterns. Starting from thermodynamic
principles, a geometric approach to fracture was
adopted, introducing an evolution equation that
balances the rate of crack formation with the
power of an arbitrary crack-driving force.

As shown in our previous work, the crack
driving force was linked to an equivalent effec-
tive stress measure, a scalar quantity that ac-
counts for the stress state at material points.
This approach enabled the implicit incorpora-
tion of various failure conditions. By deriv-
ing different equivalent effective stress mea-
sures from a unified general form, the model
accounted for common failure criteria. This
generalization not only simplified finite element
implementation but also provided the flexibility
to select appropriate driving forces for specific
applications.

To further enhance the model and address
additional complexities in concrete behavior,
such as microstructural effects and plasticity,
we extended the formulation to a micropo-
lar continuum framework. Our observations
highlighted that combining a concrete plastic-
ity model with a simpler degradation function
could produce accurate results.

The proposed framework was validated
through examples showcasing mixed-mode
cracking patterns in concrete. The results
demonstrated the model’s ability to effectively
capture the complex mixed-mode cracking be-
havior of concrete, confirming its robustness
and applicability.
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[2] Nicolas Moës, John Dolbow, and Ted Be-
lytschko. A finite element method for
crack growth without remeshing. Inter-
national journal for numerical methods in
engineering, 46(1):131–150, 1999.

[3] C. Linder and F. Armero. Finite elements
with embedded strong discontinuities for
the modeling of failure in solids. Interna-
tional Journal for Numerical Methods in
Engineering, 72(12):1391–1433, 2007.

[4] Francisco Armero and Christian Linder.
New finite elements with embedded strong
discontinuities in the finite deformation
range. Computer Methods in Applied
Mechanics and Engineering, 197:3138–
3170, 2008.

[5] Gilles A Francfort and J-J Marigo. Re-
visiting brittle fracture as an energy mini-
mization problem. Journal of the Mechan-
ics and Physics of Solids, 46(8):1319–
1342, 1998.

[6] Alan Arnold Griffith. The phenomena of
rupture and flow in solids. Philosoph-
ical transactions of the royal society of
London. Series A, 221(582-593):163–198,
1921.

[7] B. Bourdin, G.A. Francfort, and J-J.
Marigo. Numerical experiments in revis-
ited brittle fracture. Journal of the Me-
chanics and Physics of Solids, 48(4):797–
826, 2000.

8



Sina Abrari Vajari, Matthias Neuner and Christian Linder

[8] Christian Miehe, Fabian Welschinger, and
Martina Hofacker. Thermodynamically
consistent phase-field models of fracture:
Variational principles and multi-field fe
implementations. International journal
for numerical methods in engineering,
83(10):1273–1311, 2010.

[9] Marreddy Ambati, Tymofiy Gerasimov,
and Laura De Lorenzis. A review on
phase-field models of brittle fracture and
a new fast hybrid formulation. Compu-
tational Mechanics, 55(2):383–405, Feb
2015.

[10] M. Ambati, T. Gerasimov, and
L. De Lorenzis. Phase-field model-
ing of ductile fracture. Computational
Mechanics, 55(5):1017–1040, 2015.

[11] Sina Abrari Vajari, Matthias Neuner, Pra-
jwal Kammardi Arunachala, Andy Zic-
carelli, Gregory Deierlein, and Christian
Linder. A thermodynamically consistent
finite strain phase field approach to duc-
tile fracture considering multi-axial stress
states. Computer Methods in Applied
Mechanics and Engineering, 400:115467,
2022.

[12] Prajwal Kammardi Arunachala, Sina
Abrari Vajari, Matthias Neuner, Jay Se-
jin Sim, Renee Zhao, and Christian Lin-
der. A multiscale anisotropic polymer net-
work model coupled with phase field frac-
ture. International Journal for Numerical
Methods in Engineering, 125(13):e7488,
2024.

[13] Prajwal Kammardi Arunachala, Sina
Abrari Vajari, Matthias Neuner, and
Christian Linder. A multiscale phase field
fracture approach based on the non-affine
microsphere model for rubber-like ma-
terials. Computer Methods in Applied
Mechanics and Engineering, 410:115982,
2023.

[14] Jian-Ying Wu, Yuli Huang, Hao Zhou,
and Vinh Phu Nguyen. Three-dimensional
phase-field modeling of mode i + ii/iii
failure in solids. Computer Methods
in Applied Mechanics and Engineering,
373:113537, 2021.

[15] De-Cheng Feng and Jian-Ying Wu. Phase-
field regularized cohesive zone model
(czm) and size effect of concrete. Engi-
neering Fracture Mechanics, 197:66–79,
2018.

[16] Sina Abrari Vajari, Matthias Neuner, Pra-
jwal Kammardi Arunachala, and Chris-
tian Linder. Investigation of driving forces
in a phase field approach to mixed mode
fracture of concrete. Computer Methods
in Applied Mechanics and Engineering,
417:116404, 2023.

[17] Blaise Bourdin, Gilles A Francfort, and
Jean-Jacques Marigo. The variational ap-
proach to fracture. Journal of elasticity,
91(1-3):5–148, 2008.

[18] Christian Miehe, Martina Hofacker, and
Fabian Welschinger. A phase field model
for rate-independent crack propagation:
Robust algorithmic implementation based
on operator splits. Computer Methods
in Applied Mechanics and Engineering,
199(45-48):2765–2778, 2010.

[19] Jian-Ying Wu. A unified phase-field the-
ory for the mechanics of damage and
quasi-brittle failure. Journal of the Me-
chanics and Physics of Solids, 103:72–99,
2017.

[20] Christian Miehe, Lisa-Marie Schänzel,
and Heike Ulmer. Phase field model-
ing of fracture in multi-physics problems.
part i. balance of crack surface and fail-
ure criteria for brittle crack propagation
in thermo-elastic solids. Computer Meth-
ods in Applied Mechanics and Engineer-
ing, 294:449–485, 2015.

9



Sina Abrari Vajari, Matthias Neuner and Christian Linder

[21] C. Miehe, M. Hofacker, L.-M. Schänzel,
and F. Aldakheel. Phase field model-
ing of fracture in multi-physics problems.
part ii. coupled brittle-to-ductile failure
criteria and crack propagation in thermo-
elastic–plastic solids. Computer Methods
in Applied Mechanics and Engineering,
294:486–522, 2015.

[22] H Cornelissen, D Hordijk, and H Rein-
hardt. Experimental determination of
crack softening characteristics of normal-
weight and lightweight concrete. Heron,
31(2):45–46, 1986.

[23] Hanen Amor, Jean-Jacques Marigo, and
Corrado Maurini. Regularized formu-
lation of the variational brittle fracture
with unilateral contact: Numerical exper-
iments. Journal of the Mechanics and
Physics of Solids, 57(8):1209–1229, 2009.

[24] Ye Feng, Jiadi Fan, and Jie Li. Endowing
explicit cohesive laws to the phase-field
fracture theory. Journal of the Mechanics
and Physics of Solids, 152:104464, 2021.

[25] Ye Feng and Jie Li. Phase-field
method with additional dissipation force
for mixed-mode cohesive fracture. Jour-
nal of the Mechanics and Physics of
Solids, 159:104693, 2022.

[26] Jian-Ying Wu. A geometrically regu-
larized gradient-damage model with en-

ergetic equivalence. Computer Methods
in Applied Mechanics and Engineering,
328:612–637, 2018.

[27] K. Willam and E. Warnke. Constitutive
models for the triaxial behavior of con-
crete. In Proceedings of the International
Association for Bridge and Structural En-
gineering, volume 19, pages 1–30, Berg-
amo, Italy, 1975.

[28] A Cemal Eringen. Microcontinuum
field theories: I. Foundations and solids.
Springer Science & Business Media,
2012.

[29] Peter Grassl and Milan Jirásek. Damage-
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