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Abstract: Microfibers (less than 100 µm in diameter) are commonly employed in structural 

applications to minimize early shrinkage cracking and lower pore pressure during fires. For any 

application, micro fiber-reinforced concrete (FRC) structural behavior and durability must be 

estimated using the mechanical constitutive law. Formulating a mechanical constitutive law for FRC 

presents several difficulties in terms of com-prehending the physical principles and employing 

suitable numerical techniques. A novel model called “Lattice Discrete Particle Model for micro-FRC 

(LDPM-MicroF)” is presented to simulate the fracture behavior of black micro-FRC. An equivalent 

fiber diameter coefficient has been defined to balance modeling accuracy and computational cost so 

that the LDPM-MicroF model can simulate the mechanical responses of engineered cementitious 

composites. The unimodal variation in tensile strength caused by the increase in microfiber dose is 

assessed and quantitatively reproduced by LDPM-MicroF predictions. 
 

 

1 INTRODUCTION 

Microfibers with a diameter of less than 100 

µm are widely used in two structural 

applications for various purposes, such as to 

prevent shrinkage cracking at an early age [1] 

and to reduce pore pressure buildup during fire 

incidents [2]. The mechanical constitutive law 

of micro fiber-reinforced concrete (FRC) is 

essential for estimating its structural behaviour 

and durability in any application. Developing a 

mechanical constitutive law for polymer FRC 

(PFRC) poses numerous challenges in terms of 

the physical understanding of the mechanisms 

and the use of appropriate numerical methods. 

Effective addressal of these challenges is very 

complex and requires a thorough 

understanding of the materials and processes 

involved. Accurately modelling the reduction 

in macroscopic tensile strength caused by the 

increased microfiber content is challenging. 

The models used in previous studies fail to 
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effectively simulate this phenomenon as they 

do not adequately capture the interaction 

mechanisms between the fibers and the matrix. 

In addition, the problem with the available 

numerical approach is that the current 

mesoscopic models for micro-FRCs are 

burdened with intolerable computational cost 

owing to the numerous randomly oriented 

fibers. To overcome these issues, this paper 

presents a mesoscopic discrete model for mi-

cro-FRC featuring acceptable simulation 

efficiency and high accuracy. 

2 LDPM FOR MICROFIBER 

REINFORCED CONCRETE 

2.1 Mesoscale discretization 

The Lattice Discrete Particle Model 

(LDPM) [3,4] models the internal structure of 

concrete at the mesoscale level. This is 

achieved by considering the interactions 

between the coarse aggregates. The particle 

distribution is generated based on the Fuller 

sieve curve, which reflects the actual size 

distribution of the aggregates. The Delaunay 

tetrahedralization method effectively creates 

tetrahedra by connecting the centers of 

spherical particles. This process results in the 

creation of a robust lattice system formed by 

the edges of the tetrahedra that accurately 

characterizes the interactions between 

adjoining particles. Within the tetrahedra, the 

potential failure locations (12 triangular areas 

called “facets”) are generated through a 

domain tessellation. As illustrated in Fig. 1, 

each facet has a normal vector (n) and two 

shear vectors (m and l). The concrete volume 

is discretized by connecting the facets 

surrounding each particle in a polyhedral cell 

system. 

The numerical discretization of fiber 

reinforcement involves incorporating straight 

fibers into the concrete volume in random 

orientations and positions [5,6]. Each fiber was 

treated as a cylinder with a diameter of df and 

a length of Lf. This means that the cross-

sectional area of the fiber ( 𝐴f ) can be 

calculated as 𝐴f = π𝑑f
2/4  and its volume (vf) 

as vf = AfLf. Once the total fiber volume 

fraction Vf is known, the total number of fibers 

Nf in a given volume (Vsp) can be determined 

using the formula 𝑁𝑓 = ⌈𝑉𝑠𝑝𝑉𝑓/𝑣𝑓⌉ . eere, ⌈⋅⌉ 

represents the ceiling function, which returns 

the smallest integer greater than or equal to the 

argument. The fiber system intersects the 

LDPM Cell system within the concrete volume, 

and one fiber can be paired with one or more 

facets. As shown in Fig. 1, each pair of fibers 

(𝒏f ) and a facet (𝒏 ) can be divided into two 

embedment lengths: the shorter (Ls) and the 

longer (Ll). An equivalent fiber diameter 

coefficient (𝑟f = 𝑑f
eq

/𝑑f ≥ 1 ) is defined with 

an equivalent fiber diameter (𝑑f
eq

) to bridge the 

scale gap. The reduced number of fibers is 

calculated as 𝑁f/𝑟f
2  when the fiber volume 

fraction is kept constant. The mechanical 

interactions between the matrix and fiber can 

be calculated as the fiber bridging force on the 

paired LDPM facet where the crack occurs. 

 
Figure 1. Mesoscale discretization of fiber 

reinforced concrete. 

3.2 LDPM-MicroF constitutive law 

The LDPM assumes mesostructural 

deformation with rigid body kinematics. The 

strain of a face attached to a tetrahedral edge 

(lattice element) with two particle positions 𝒙𝑖 

and 𝒙𝑗 (𝒆s), is characterized as 

𝒆s = [𝑒N
s  𝑒M

s  𝑒L
s]T = [

𝒏T⟦𝒖⟧

𝑙
 
𝒎T⟦𝒖⟧

𝑙
 
𝒍T⟦𝒖⟧

𝑙
]

T

     (1) 

where 𝑒N  represents the normal component; 

𝑒M  and 𝑒L  represent the two tangential 

components of the strain, respectively; ⟦𝒖⟧ is 

the displacement jump, which is calculated as 

the difference between the displacements at the 

two nodes of a facet, namely, 𝒖𝑗 and 𝒖𝑖, which 

are evaluated at the centroid of the facet; 𝑙 is 

the distance between the two nodes, which is 

calculated using the Euclidean norm between 

the two node positions, ‖𝒙𝑗 − 𝒙𝑖‖2 ; 𝒏  is the 
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unit vector, which is the normalized vector 

pointing in the direction from node 𝑖 to node 𝑗, 

namely 𝒏 = (𝒙𝑗 − 𝒙𝑖)/𝑙 ; 𝒎  and 𝒍  are two 

mutually orthogonal unit vectors, which are 

defined in such a way that they are orthogonal 

to 𝒏. The translational and rotational degrees 

of freedom of the particles were used to 

calculate the displacements 𝒖𝑖 and 𝒖𝑗 through 

rigid-body kinematics. 

The elastic behavior of the LDPM 

assumes that the tractions of the solid skeleton, 

represented by 𝒕s , are proportional to the 

corresponding strains as follows: 
𝒕s = [𝑡N

s   𝑡M
s   𝑡L

s]T = [𝐸N𝑒N
s   𝐸T𝑒M

s   𝐸T𝑒L
s]T    (2) 

where 𝑡N
s , 𝑡M

s , and 𝑡L
s represent the normal and 

shear components of the traction; 𝐸N = 𝐸0 and 

𝐸T = 𝛼𝐸0 , where 𝐸0  denotes the effective 

normal elastic modulus and 𝛼 = 0.25  is the 

shear-normal coupling parameter of concrete, 

as mentioned in a previous study. In addition, 

the mesoscopic crack-opening vector (𝜹 ) in 

each LDPM facet is determined as follows: 

𝜹 = 𝛿N𝒏 + 𝛿L𝒍 + 𝛿M𝒎 (3) 

where 𝛿N = 𝑙(𝑒N
s − 𝑡N

s /𝐸N)  is the crack 

opening in the normal direction, and 𝛿L =
𝑙(𝑒L

s − 𝑡L
s/𝐸L)  and 𝛿M = 𝑙(𝑒M

s − 𝑡M
s /𝐸M)  are 

two shear slidings of the crack in directions 𝒎 

and 𝒍. As soon as a crack open (i.e., 𝛿 ≥ 0), the 

fiber crack-bridging force begins to contribute 

to the paired facet. It was assumed that this 

force acts parallel to the stress on the LDPM 

solid skeleton (matrix). As the main innovation 

of this work, the facet traction is the sum of the 

bridging forces of the fibers with a section area 

(𝐴f) within the facet area (𝐴F) and the cohesion 

of the matrix with the area ( 𝐴F − 𝐴f ). To 

determine the overall stress on each facet of the 

LDPM, the total stress (𝒕) can be calculated as 

follows: 

𝒕 = (1 −
𝐴f

𝐴F
) 𝒕s + ∑ (

𝑷f

𝐴F
)

fiber∈𝐴F

(4) 

where 𝐴F  is the LDPM facet area; 𝑷f  is the 

fiber bridging force of a single fiber on the 

paired facet; 𝐴f = ∑ (π𝑑f/4 cos 𝜃)fiber∈𝐴F
  is 

the total intersection area of fibers crossing this 

facet (𝑑f is the fiber diameter and 𝜃 is the angle 

between fiber and facet). As discussed, 𝑷f ≈ 0 

represents the facet under compression (𝑒N
s <

0) or with no crack opening (𝛿 = 0).  

Each fiber bonded to the matrix is straight 

and elastic with negligible bending stiffness. 

An embedded fiber must first detach 

completely from the surrounding matrix to 

achieve a pure frictional pullout. During the 

debonding stage, a “tunnel-type” cracking 

process occurs, which is characterized by a 

bond fracture energy of 𝐺d , and a bond 

frictional stress of 𝜏0. The critical slippage, 𝑣d, 

which represents complete detachment, can be 

expressed as follows: 

𝑣d
eq

=
2𝜏0

eq
𝐿e

2

𝐸f𝑑f
eq + (

8𝐺d
eq

𝐿e
2

𝐸f𝑑f
eq )

1
2

(5) 

where Le is the length of the fiber embedding, 

and Ef is the fiber elastic modulus. The 

superscript “eq” denotes an equivalent value 

that provides the same contribution as the 

original value but refers to the equivalent fiber 

diameter. The equivalent fiber diameter, 

denoted as 𝑑f
eq

= 𝑟f𝑑f, was defined to reduce 

the number of microfibers while keeping the 

fiber length constant. Similarly, the equivalent 

bond fracture energy, 𝐺d
eq

= 𝑟f𝐺d , and the 

equivalent bond frictional stress, 𝜏0
eq

= 𝑟f𝜏0 , 

are defined. By substituting the values of 𝑑f
eq

, 

𝐺d
eq

 , and 𝜏0
eq

  into Eq. (5), the equivalent 

critical slippage, 𝑣d
eq

= 𝑣d , is determined, 

which is independent of the equivalent 

coefficient rf. 

At the debonding stage (𝑣 < 𝑣d ) of an 

equivalent fiber, the bridging force (𝑃eq(𝑣) ) 

can be calculated by: 

𝑃eq(𝑣) = [
π2𝐸f(𝑑f

eq
)3

2
(𝜏0

eq
𝑣 + 𝐺d

eq
)]

1
2

(6) 

At the pull-out stage (𝑣 > 𝑣d), the fiber 

resistance is exclusively friction, and the 

bridging force of an equivalent fiber is 

calculated as follows: 

𝑃eq(𝑣) = 𝑃0
eq

(1 −
𝑣 − 𝑣d

𝐿e
) (1 + 𝛽eq

𝑣 − 𝑣d

𝑑
f
eq ) (7) 

where 𝑃0
eq

  is the initial equivalent fiber load 

given by 𝑃0
eq

= π𝐿e𝑑f
eq

𝜏0
eq

, and 𝛽eq = 𝑟f𝛽 (𝛽 

is the slip hardening–softening) is the 

equivalent dimensionless coefficient that 

determines the friction between fiber and 

tunnel as shown in Fig. 2. For reloading, the 

𝑃eq = 0 since the soft microfiber is studied. 
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The friction coefficient does not change 

with the slippage in the case of 𝛽eq = 0. For 

the case of 𝛽eq < 0 or 𝛽eq > 0, the interfacial 

friction decreases or increases with the 

slippage. When the equivalent parameters are 

substituted into Eqs. (6) and (7), the bridging 

force of one equivalent fiber contributes the 

same as 𝑟f
2  microfibers, being 𝑃eq(𝑣) =

𝑟f
2𝑃(𝑣). 

The force and moment equilibrium of 

each fiber-reinforced LDPM cell complete the 

governing equation. This is expressed as: 

∑ 𝐴𝑘
p

𝑘∈ℱ𝐼

𝒕𝑘 + 𝑉𝐼𝒃 = 𝟎, ∑ 𝐴𝑘
p

𝑘∈ℱ𝐼

𝒄𝑘 × 𝒕𝑘 = 𝟎 (8) 

where 𝒕𝑘 is facet k stress; ℱ𝐼 includes all facets 

surrounding cell 𝐼 ; 𝐴𝑘
p

= 𝐴𝑘𝒏L
T𝒏𝑘  is the 

projected area of facet k, where 𝒏𝑘  is the 

normal unit vector of facet k with area 𝐴𝑘, and 

𝒏L  is the orientation of LDPM tetrahedron 

edge associated with facet k; 𝑉𝐼  is the cell 

volume; 𝒃 is the external body forces on cell; 

𝒄𝑘 represents the distance between facet k and 

the cell center. 

 
Figure 2. Illustrations of fiber–matrix interaction. (a) 

Pullout friction and slippage; (b) calibration of 𝛽𝑒𝑞 

[7]; (c) matrix spalling. 

3 MODEL CAPABILITY: FOUR-

POINT BENDING TEST 

In this section, simulations of the four-

point bending tests of micro-basalt FRC 

(BFRC) [8] are conducted to demonstrate the 

model’s ability to reproduce the observed 

cracking patterns. The bending test, according 

to the Chinese test standard (GB/T50081––

2019), can effectively capture the variations in 

cracking patterns caused by the addition of 

fibers. 

The tested beams had a square cross-

section of 100 mm depth × 100 mm height and 

a length of 400 mm. The specimen was 

securely supported by two steel rods, each with 

a span of 300 mm, and the load was applied 

using two additional steel rods with a span of 

100 mm. The numerical setup reproduced the 

experimental setup identically, as shown in Fig. 

3. The steel rods and specimen were adjusted 

so that there is high friction between them. The 

friction is characterized by a friction 

coefficient, denoted as 𝜇 . It is described as a 

function of the contact slippage ( 𝑠 ) and 

expressed in the form of 𝜇(𝑠) = 𝜇d + (𝜇s −
𝜇d)𝑠0/(𝑠 + 𝑠0) . eere, 𝜇s  is equal to 0.13, 𝜇d 

is equal to 0.015, and 𝑠0 is equal to 1.3 mm. 

To reduce the computational cost, only 

the potential area of damage shown in Fig. 3(b) 

was modeled with the LDPM-MicroF, and the 

elastic FEM models the remaining parts with 

an elastic modulus of 20 GPa. The coarse 

aggregates with a diameter of 5–20 mm and the 

micro-basalt fiber with a diameter of 16 μm 

and length of 30 mm are used in the 

discretization of the material as shown in Fig. 

3(b). The value rf = 6 was adopted to obtain an 

average facet–fiber intersection of eight within 

the potential damage area. 

3.1 Effectiveness of the model 

Unimodal strength variation was also 

observed in this experimental investigation 

(Fig. 3(a)). The flexural strength increases 

from 5.20 to 5.81 MPa, when the fiber volume 

fraction is increased up to 0.2%. 

When the fiber volume fraction is 

increased to 0.3%, the flexural strength 

decreases to 5.6 MPa, which is lower than the 

flexural strength of the mix with Vf = 0.1%. 

The model parameters for plain concrete were 

first calibrated by modeling the tests on the 

matrix. Subsequently, the parameters of the 

fiber–matrix interaction were calibrated by 

modeling the mixture with a volume fraction 

of 0.1% of microfibers. These results are 



L. SHEN, Q. REN, G. DI LUZIO AND G. CUSATIS 

 5 

summarized in Table 1. Third, numerical 

simulations of the mixes with 0.2% and 0.3% 

volume fractions of microfibers were 

performed as pure predictions. 

As shown in Fig. 3(a), the post-peak 

curves of loading displacement versus flexural 

stress differed significantly. The specimens 

made of plain concrete exhibit brittle failure. 

The residual bearing stress increased with the 

fiber dosage. When the fiber volume fraction 

reached 0.3%, the post-peak bearing stress 

gradually increased with the bending 

displacement and then reached a second stress 

peak. The mixture with Vf = 0.3% exhibits 

apparent ductile failure. The increase in the 

post-peak bearing stress also represents an 

increase in the material fracture energy. This 

phenomenon can also be observed visually by 

comparing the cracking patterns illustrated in 

Fig. 3(b). Interestingly, the four-point bending 

test without a notch is suitable to confirm the 

ability of the model to reproduce cracking 

patterns (failure mode). The presence of micro-

basalt fibers significantly increases the number 

of microcrack initiations in the bending area 

and can also change the macrocrack path. The 

case of 𝑉f = 0.3% with rf = 3 (average facet–

fiber intersection of 12) was also investigated 

to check the sensitivity to 𝑟f. By comparing the 

flexural stress variations for the cases with rf = 

3 and rf = 6, it is clear that increasing rf from 3 

to 6 shows a good agreement in the flexural 

strength and post-peak bearing stress and 

significantly reduces the simulation time from 

18 to 4 h (CPU i9-13900K with 12 threads). 

 

 

 
Figure 3. Results of the four-point bending tests of BFRC [8]. (a) Flexural strength and stress–strain curve; (b) 

model setups and cracking patterns. Num.: numerical data; FEM: finite element method. 
 

3.2 Effect of the parameters in the fiber–

matrix bond law 

The effect of mechanical parameters 

describing fiber–matrix interaction on the 

macroscopic behavior (i.e., flexural stress 

versus displacement curves) is investigated by 

considering the influence of the fiber–matrix 

bond frictional stress (𝜏0), the slip hardening-

softening (𝛽), fiber elastic modulus (Ef), and 

fiber tensile strength (𝜎uf ). The fiber elastic 

modulus and tensile strength were assumed to 

be constant. This paper examines a variety of 

scenarios with fiber–matrix bond stress 𝜏0 

ranging from 0.1 to 1 MPa, and the fiber–

matrix slip hardening-softening 𝛽  ranging 

from −0.05 to 0.05. The results for these cases 

are shown in Fig. 4. 
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In Fig. 4(a), the fiber–matrix bond stress 

𝜏0 significantly increases the post-peak stress 

but only has a marginal effect on the peak 

stress. This phenomenon can also be explained 

by larger FPZ and denser microcracks at 𝜏0 =
1  MPa than in the case of 𝜏0 = 0.1 . The 

observed condition was primarily a 

consequence of the basic assumption of the 

model, which states that the fiber bridging 

force was active during crack initiation. 

Interestingly, the results in Fig. 4(b) show a 

surprising trend: increasing the bond stress 

does not always lead to improved mechanical 

responses, as shown by the comparison 

between the cases with 𝜏0 = 1  and 0.5  MPa. 

The flexural stress shows a remarkable 

decrease owing to fiber breakage when the 

fiber bridging force exceeds its tensile strength. 

With the development of loading, the post-

peak stress may drop below the case with a 

smaller value of the fiber–matrix bond stress. 

The fiber–matrix slip hardening–

softening depends on the fiber surface 

treatment, fiber type, fiber material, and matrix 

mixture. The parameter can be determined 

from the fiber pull-out test data. Our results in 

Fig. 4(b) reveal that an increase in fiber–matrix 

slip hardening–softening 𝛽  leads to a slight 

rise in post-peak bearing stress and a distinct 

mesoscopic cracking pattern. Therefore, the 

recommended slip hardening–softening is zero 

if the fiber pull-out test is not available. 
 

 
Figure 4. Effect of the mechanical parameters describing the fiber–matrix interaction. (a) Fiber–matrix bond stress 

𝜏0; (b) fiber–matrix slip hardening-softening 𝛽. 
 

4 CONCLUSIONS 

This study presented groundbreaking 

innovations in the numerical efficiency of 

mesoscale approaches, specifically in the 

context of microFRC. These innovations have 

significantly improved the accuracy and speed 

of numerical simulations. In addition, this 

research has yielded fresh perspectives on the 

physical understanding of the mechanical 

properties of micro-FRC, which consequently 

holds significant ramifications for the field of 

study. 

The LDPM-MicroF model solves the 

computational challenge posed by the 

enormous number of microfibers (diameter ≤ 

100 μm) by defining an equivalent coefficient 
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for fiber diameter. To ensure high modeling 

accuracy and numerical efficiency, it was 

determined that the equivalent coefficient of the 

fiber diameter must be set appropriately to 

guarantee a minimum average of fiber–matrix 

intersection equal to 4.  

LDPM-MicroF can predict the initial 

increase and subsequent decrease in tensile 

strength of micro-FRC as the microfiber 

content increases. This capability is due to the 

model’s ability to account for the combined 

effects of the weakened fiber contribution at the 

mesoscale and the positive contribution of the 

nearby matrix at the microscale. From a 

mesoscopic mechanical standpoint, the 

microfibers contribute less to the material 

resistance than the replaced matrix. Therefore, 

the presence of microfibers leads to a reduction 

in macroscopic tensile strength at each 

microfiber dose. In the constitutive 

relationships, the areas of fiber intersection and 

effective matrix on the crack surfaces were 

distinguished to simulate this phenomenon. The 

presence of microfibers in a cementitious 

composite can slightly increase the strength of 

the nearby matrix. This is due to the “near-field 

effect” of the microfibers, which increases the 

strength of the matrix in the presence of many 

fibers. This phenomenon was accounted for by 

relating the facet tensile strength of the matrix 

to the fiber content. 
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