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Abstract. This study introduces a statistical mechanics framework for modeling fracture and damage
processes in concrete materials, leveraging the semi-grand canonical ensemble. By conceptualizing
fracture as a monolayer adsorption process and damage as a multi-layer adsorption phenomenon,
the approach extends classical fracture mechanics through statistical observables and ensemble-based
formulations. Through simulations on notched beams, the framework demonstrates key insights into
the energy dissipation mechanisms underpinning fracture. Statistical observables, such as isosteric
heats of adsorption, provide a robust method to predict fracture behavior without the need for exper-
imental size-effect studies, while damage isotherms are highlighting the influence of configurational
pressure on material degradation. The results emphasize the potential of this framework to enhance
the predictive modeling of quasi-brittle materials, paving the way for applications in material design
and structural engineering.

1 INTRODUCTION

Quasi-static fracture mechanics, as first for-
mulated by Griffith in his seminal 1921 paper
[1], describes fracture as an equilibrium pro-
cess between two distinct material configura-
tions under constant loading. In this framework,
fracture propagation is governed by an irre-
versible material change, dictated by the energy
released during incremental crack growth com-
pared to a critical threshold: the critical energy
release rate, Gc. This foundational concept of
dissipation rate catalyzed significant advance-
ments in the field of fracture mechanics. Early
theoretical approaches aimed to derive closed-
form solutions for critical energy release rates
across a wide range of fracture test [2–4]. Ir-

win’s introduction of stress-intensity factors [5]
further connected this global quantity to local
material properties by decomposing fracture re-
sponses into the three distinct loading modes.
More recently, the advent of variational for-
mulations re-framed fracture mechanics as an
energy-minimization problem [6–8], leveraging
modern computational tools to simulate com-
plex crack growth with high accuracy, includ-
ing mixed-mode fracture [9], crack branching
[10] and fracture of composite [11]. Despite
these advancements, current methods share two
significant shortcomings that limit their utility.
First, they rely heavily on the concept of critical
energy release rate, Gc, which is experimentally
costly and cumbersome to measure. Such mea-
surements are test dependent and often require
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size-effect studies across multiple specimens
[12]. Second, existing methods are inherently
deterministic, focusing on capturing the aver-
age response of a material under loading. This
overlooks the inherent randomness and statis-
tical nature of fracture phenomena. The work
presented here revisits the concept of fracture
through a statistical lens, building on Griffith’s
equilibrium and energy-driven framework. This
statistical formalism is further extended to (non-
local) damage processes and leverages statis-
tical observables to better characterize failure
processes.

2 FRACTURE AND DAMAGE IN THE
SEMIGRAND ENSEMBLE

2.1 Fracture Mechanics as a monolayer ad-
sorption process

To incorporate statistics into the fracture
problem, we need to define an appropriate
statistical ensemble. Consider a body Ω =⊕N0

k=1Pk, subjected to a displacement loading
x. The fracture state of each element Pk is
characterized by a state variable sk ∈ {0, 1},
where sk = 0 represents the elastic state and
sk = 1 the fractured state. From a thermo-
dynamic perspective, fracture is a surface pro-
cess, and the system therefore does not ex-
change matter with its external bath. Thus,
the total number of elements, N0, is con-
served, while their fracture state evolve as N0 =∑N0

k=1

[
skNb + (1− sk)Ne

]
, where Ne and Nb

are the numbers of elastic and broken elements,
respectively.

This description of fracture as a change of el-
ement identity is consistent with the use of the
the semi-grand canonical ensemble (∆µ, V, T ),
typically use in the study of binary mixtures
and adsorption processes [13, 14]. Within this
framework, two new descriptors emerge for the
fracture problem: the chemical potential dif-
ference ∆µ, representing a radiation source,
affecting equally each elements’ transition to
the fractured state, and the kinetic temperature
T , quantifying the system disorder (i.e uncer-
tainty).

In this framework, the number of elastic el-

ements Ne can be described by the following
functional equation:

Ne = F(∆µ, T, x), (1)

where x stands for the prescribed loading.
Recalling the surface nature of fracture pro-
cesses, the previous formulation simplifies to:

Ne ≈ F(∆µ, T ) (2)

This formulation parallels gas adsorption
equilibria [15], where the volume of adsorbed
particles (e.g elements in solid state) is driven
by the adsorption pressure (here ∆µ) and the
system temperature T . The optimal adsorption
configuration at a fixed external loading may be
found by minimizing the system’s semi-grand
potential Y , expressed as:

Y = F −∆µNe (3)

where F is the Helmholtz energy function. It
remains to precise the form of F for the fracture
problem. One suitable formulation is the ex-
tended deformation-fracture potential proposed
by Francfort and Marigo [17], which encom-
passes both the deformation energy of the solid,
and the fracture energy dissipated along fracture
surfaces Γ:

U(x⃗,Γ) =

∫
Ω/Γ

uλ(x⃗) dV︸ ︷︷ ︸
Uλ

+

∫
Γ

Gc dS︸ ︷︷ ︸
UΓ

(4)

where Uλ stands for the potential energy
due to deformation in the canonical ensemble;
whereas UΓ is the fracture energy, Gc that is dis-
sipated in the creation of fracture surface, Γ.
Originally introduced as an energy minimiza-
tion problem for both the displacement field,
and fracture surface, the potential expression
(4) resembles formally Embedded-Atom Meth-
ods (EAM), in which the the total energy is
the sum of pair-wise interactions due to particle
distances and some embedding functions repre-
sentative of the ground-state energy [18]; hence
formally:

U(x⃗, Nb) = Uλ(x⃗) +

N0∑
k=1

skϵ
(k)
0 (5)
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where ϵ0 is the groundstate energy released in
the rupture of bond i = 1...Nb. The formal
analogy between Eq. (4) and Eq. (5), allows us
to link the fracture energy of brittle fracture to
the groundstate energy:

N0∑
k=1

skϵ
(k)
0 =

∫
Γ

Gc dS (6)

In order to minimize the semi-grand poten-
tial Y we proceed by exploring fracture micro-
states and evaluating their likelihood by mak-
ing use of Monte Carlo simulations. Given
fixed mechanical boundary conditions (e.g. pre-
scribed loads and displacements), we select an
element at random and flip its fracture state
sk = 1 − sk. Given a proposed fracture state
transition from micro-state o to n, its accep-
tance is driven by the following criterion [16]:

acc(o → n) = min(1, po→n) (7)

where po→n, for an arbitrary fracture site k,
is defined as:

po→n
fracture
= exp

[
β
(
−∆µ−∆Ue(k)→f(k)

)]
po→n

healing
= exp

[
β
(
+∆µ−∆Ub(k)→e(k)

)]
(8)

Herein, ∆Ue(k)→b(k) = −∆Ub(k)→e(k) = ϵk0 −
Uk
λ .

2.2 Extension to damage processes
Given the formulation of brittle fracture as

a binary process, best described by mono-layer
adsorption theory, it seems natural to extend this
analogy to damage by describing it as a multi-
layer adsorption process. Considering a finite
number of Nd admissible damage states and an
associated ω⃗ ∈ [0, 1], we can modify the frac-
ture state variable presented in Section 2.1 into
a damage state vector s⃗ =

∑Nd

i=1 δjie⃗i so that:

∀i = 1...N0; ωi = s⃗(i) · ω⃗ (9)

The transition between damage states is de-
fined by a state transition matrix (P) such that
s⃗
(k)
n = PT · s⃗ (k)

o . The elements of P define

the conditional probability Po,n = Pr(n | o) to
transition from damage state j = o to damage
state j = n. Within the brittle fracture frame-
work previously presented, state transitions can
be expressed using a transition matrix P applied
over the state vector s⃗, where P reads:

P =

[
0 1
1 0

]
.

For a system with Nd damage states, a log-
ical choice to make in the structure of P is to
consider unbiased transitions to adjacent dam-
age states only. In other words, the transition
matrix generalizes to:

P =



0 1/2 0 . . . 0 0 0
1 0 1/2 . . . 0 0 0
0 1/2 0 . . . 0 0 0
...

...
... . . . 1/2 0 0

0 0 0 . . . 0 1/2 0
0 0 0 . . . 1/2 0 1
0 0 0 . . . 0 1/2 0


.

where the asymmetry in the transition pro-
posal for the boundary states should be ac-
counted for in the acceptance criterion.

A typical simplification in physics of com-
positional changes is to consider that the po-
tential difference between adjacent states is in-
dependent of the state themselves. In other
words, considering two arbitrary damage states
(i, i+ 1) ∈ {1, ..., Nd − 1} and their associated
chemical potential (µi, µi+1):

∆µ := µi+1 − µi (10)

The acceptance criterion for a damage transi-
tion o → n is then readily extended from Equa-
tion 8 as:

po→n = exp[−β(∆U − δ∆µ)] ≤ 1 (11)

where δ = sign(ω(k)
n − ω

(k)
o ) = ±1 indicates

the direction of the damage progression and the
exact form ∆U will be further discussed in Sec-
tion 3.2.

Finally, it is worth highlighting that the dam-
age state vector s⃗ and the associated ω⃗ provide
a measure of material performance through the

3



A. Attias, F.-J. Ulm

(undamaged) bond ”mass” density ρ, analogous
to the number of solid elements Ne in a binary
fracture process. This relationship is expressed
as:

ρ = 1− 1

N0

N0∑
k=1

s⃗(k) · ω⃗ (12)

This formulation allows us to draw a formal
parallel between ρ and the equivalent mono-
layer thickness θ in adsorption physics [15],
which quantifies the average number of layers
deposited on the adsorbent—essentially repre-
senting the system’s average remaining perfor-
mance. In this analogy, damage can naturally
be described using the framework of multi-layer
adsorption physics, where a fixed number Nd of
adsorption layers is considered.

3 IMPLEMENTATION

3.1 Reduced Units

Our simulation-based investigation is carried
out in reduced units (or Lennard Jones units,
see [16]), commonly employed in molecular
simulations for purpose of scaling. Reduced
units originate from a dimensional analysis of
all quantities using as set of dimensionally inde-
pendent quantities a reference groundstate en-
ergy, ϵ0 and a reference distance between parti-
cles, D, typically associated with a bond equi-
librium distance. Derived quantities are the re-
duced temperature, T ∗ = kBT/ϵ0 = (βϵ0)

−1;
and mechanical quantities, such as forces, F⃗ ∗ =
F⃗ (Dϵ−1

0 ), moments M⃗∗ = M⃗(ϵ−1
0 ), stresses

σ∗ = σ(D3ϵ−1
0 ). To generalize this system of

reduced units to d = 2 and d = 3 dimen-
sions, it is useful to introduce two length dimen-
sions for in-plane (DR) and out-of-plane (Dz)
length dimensions, and scale the elastic moduli
(K∗, G∗, κ∗), the fracture energy (G∗

c ) and the

fracture toughness (K∗
c ∼

√
G∗G∗

c ) as,

(K∗, G∗, κ∗) = (K,G, κ)

(
Dd

RD
3−d
z

ϵ0

)
(13)

G∗
c = Gc

(
Dd−1

R D3−d
z

ϵ0

)
(14)

K∗
c = Kc

(
D

d−1/2
R D3−d

z

ϵ0

)
(15)

where κ will be defined in Section 3.2. These
scaling relations highlight the extensive nature
of the groundstate energy (ϵ0), in contrast to
the intensive nature of Griffith’s fracture energy
(Gc). We keep these scaling relation in mind in
forthcoming applications.

3.2 Short-Range and Long-Rang Continuum-
Based Interaction Potentials

One feature, which distinguishes our ap-
proach from previous fluctuation-based fracture
developments [19–21], is the consideration of
bond interaction potentials using continuum-
based finite elements. In the continuum ap-
proach, short-range interactions are taken into
account by classical elastic constitutive equa-
tions in function of the displacement gradient,
ζ = ∇x⃗. For instance, for an isotropic material
in the harmonic limit:

U
(k)
λ =

1− ω(k)

2

∫
Pk

[K ε2v+2G (ε : ε−1

3
ε2v)] dV

(16)
where K,G stand for bulk and shear modulus;
ε = 1

2
(ζ + ζT ) is the symmetric strain tensor;

and εv = tr ζ = ∇ · x⃗ is the volume strain.
Expression (16) is the continuum counterpart
of 2-pt interactions based upon the distance be-
tween particles. Implemented in the finite ele-
ment method, the displacement gradient is ap-
proximated by ζ = [Bij](x)j , with [Bij] the
strain-displacement matrix, and (x)j the vector
of nodal displacements of the element [22].

Furthermore, in our investigation we con-
sider also long-range interactions in form of the
recently proposed sprain theory [23–25]: an en-
riched potential formulation considering curva-
ture effects in form of the gradient of the dis-
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placement gradient, ∇ζ = ∇(∇x⃗):

U (k)
χ =

f(ωk)

2

∫
Pk

κ (ℓ0∇ζ)2 dV (17)

where κ is the curvature modulus, while ℓ0 is a
material length scale over which the long-range
curvature effects are activated. Finally, these
long-range interactions can be modulated by a
function f , which is dependent on local dam-
age. In this paper, we will restrict ourselves to
two forms of f , f(ωk) = 1 considering curva-
ture interactions to be independent of damage,
as presented in [23], and f(ωk) = H(1 − ωk)
where long-range interations cease at complete
damage.

Expression (18) can be viewed as the con-
tinuum counter-part of 3-pt and 4-pt interac-
tions that generate a restoring energy due to an-
gle variations, represented –in the continuum
setting– by the curvature ∇ζ. Finally, for the fi-
nite element implementation of the long-range
interactions, we use the recently proposed La-
grange multiplier constraint, which enforces an
approximate displacement gradient constraint,
ζ −∇x⃗ → 0, over each element, without alter-
ing the energy density due to curvature effect;
that is [23, 25]:

U (k)
χ =

f(ωk)

2

∫
Pk

[
κ (ℓ0∇ζ)2 +Λ : (ζ −∇x⃗)

]
dV

(18)
with Λ the Lagrange multipliers, which are un-
knowns of the deformation energy minimiza-
tion problem at fixed damage state.

4 APPLICATIONS
In this section, we analyze the outputs of

our fluctuation-based fracture method, focus-
ing on a notched beam subjected to a three-
point bending test. Specifically, we investigate
the three models previously described: linear
elastic fracture mechanics (LEFM), local con-
tinuum damage (CDM), and sprain theory with
the f -function formulation introduced in Sec-
tion 3.2. For this analysis, we consider a re-
duced material length l∗0 = 2 and κ∗ = E∗/15,
as suggested in [23].

5 Fracture Micro-States
We first conduct a classical displacement-

driven load test on the notched beam under
∆µ∗ = 0, assuming a homogeneous ground-
state energy ϵ∗0. At low kinetic temperatures
(T ∗ = 10−5, Fig. 1B.), the fracture process
zone in the CDM sample is confined to a nar-
row band, with damage localizing within a sin-
gle element. Complete failure occurs before any
propagation of micro-defects beyond the crack
tip. Consequently, quasi-brittle fracture cannot
be characterized by similarity laws [26]; the so-
lution remains mesh-dependent, and in the ther-
modynamic limit (N0 → ∞), energy dissipa-
tion vanishes.

Figure 1: Normalized nominal stress as a function of im-
posed displacement at low kinetic temperature (T ∗ =
10−5). The equilibrium damage micro-state at maximum
displacement (x∗) is shown for: A) local (LEFM) inter-
actions, B) local (damage) interactions, and curvature-
enriched interactions that are C) constant with respect
to damage (f(ωk) = 1), and D) vanishing at maximum
damage (f(ωk) = H(1− ωk)).

Here, damage functions primarily as a
continuous approximation of LEFM, which
inherently comprises two equilibrium states
(Fig. 1A). Unlike LEFM (Figs. 1A and 2A), no
temperature-induced transition from directed
fracture to random nucleation is observed in
damage models (Figs. 2B, 2C, and 2D). Even at
high kinetic temperatures (T ∗ = 1), kinetic ag-
itation enables the emergence of a distinct frac-
ture pattern. The significant number of adsorp-
tion layers (Nd ≥ 500) mitigates temperature
effects, confining random material degradation
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to the initial damage layers. Thermodynam-
ically, the accessibility of intermediate dam-
age states is achievable only by incorporating
long-range interactions into the damage formu-
lation (Figs. 1C and 1D). This non-local energy
redistribution introduces a restoring force that
maintains cohesion, explaining the delayed on-
set of damage when the enhanced energy term
U = Uλ + Uχ is considered (Fig. 1).

However, it is important to note that mak-
ing these long-range interactions independent
of damage (f(ωk) = 1) can result in spuri-
ous lateral damage spread (Fig. 1C) and an ex-
tended damage tail due to the constant restor-
ing force. Consequently, for the remainder of
this study, we focus on curvature-enriched in-
teractions modulated by the function f(ωk) =
H(1− ωk).

Figure 2: Normalized nominal stress as a function of im-
posed displacement at high kinetic temperature (T ∗ = 1).
The equilibrium damage micro-state at maximum dis-
placement (x∗) is shown for: A) local (LEFM) inter-
actions, B) local (damage) interactions, and curvature-
enriched interactions that are C) constant with respect
to damage (f(ωk) = 1), and D) vanishing at maximum
damage (f(ωk) = H(1− ωk)).

5.1 Isosteric Heats of Adsorption
In this section, we establish a statistical ana-

logue to Griffith’s fracture criterion [1] using
isosteric heats of adsorption, as first proposed
in [21]. Within the framework of LEFM, we de-
fine the elastic heat of adsorption—analogous
to the elastic energy release rate—as follows
[27]:

q∗λ = −∂⟨U∗
λ⟩

∂⟨Nf⟩
= −cov(U∗

λ , Nf )

var(Nf )
=

∂⟨U∗
λ⟩

∂⟨Ne⟩
.

(19)
Similarly, by defining U∗

0 =
∑N0

k=1 s
k(ϵ

(k)
0 )∗,

the critical isosteric heat of adsorption is ex-
pressed as:

q∗0 =
∂⟨U∗

0 ⟩
∂⟨Ne⟩

Hom.
=

sample
1. (20)

This ensemble-based formulation circum-
vents the need for experimental determination
of the critical energy release rate, traditionally
performed via size-effect studies [28], and elim-
inates complexities associated with numerical
derivatives [29, 30]. For multi-layer adsorption
processes, the extension is straightforward by
replacing the number of elastic elements with
the undamaged bond mass density ρ:

q∗λ =
1

N0

∂⟨U∗
λ⟩

∂⟨ρ⟩
,

q∗0 =
1

N0

∂⟨U∗
0 ⟩

∂⟨ρ⟩
.

(21)

From an adsorption perspective, variations
are observed with respect to the equivalent ad-
sorbed monolayer thickness.

As shown in Fig. 3, the limit energy release
rate consistently converges to a singular value,
regardless of the system’s kinetic temperature,
thereby reinforcing its role as a marker for di-
rected fracture propagation. Notably, q∗0 = 1
arises naturally from our use of reduced units,
as demonstrated in Eq. (20).

Examining the elastic heat of adsorption q∗λ,
two distinct regimes emerge at low kinetic tem-
peratures (T ∗ < 10−1). For LEFM and local
CDM, there is an initial overshoot of the criti-
cal energy release rate q∗0 at damage initiation.
In the LEFM context (Fig. 3a), this overshoot
highlights the instability of LEFM due to its
two-state formulation, violating Griffith’s crite-
rion. Conversely, in the CDM context (Fig. 3b),
q∗λ quantifies energy dissipation due to damage,
where q∗λ > q∗0 for x∗ ∈ [0.007, 0.012], corre-
sponding to the global instability regime seen
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Figure 3: Isosteric heats of adsorption. (a) The LEFM criterion relies on the elastic configurational volume Ne, while (b)
CDM and (c) Sprain models utilize the undamaged bond density ρ.

in the σ∗
N plot of Fig. 1. This behavior mirrors

dynamic fracture mechanics, where the crack
velocity balances the elastic energy release rate
with its critical counterpart. In local damage
models, the absence of energy redistribution
across a defined fracture width triggers addi-
tional damage at the crack tip, transitioning the
fracture process from quasi-static to dynamic
and challenging the treatment of damage as a
thermodynamic process at equilibrium. How-
ever, long-range interactions (Fig. 3c) facilitate
energy redistribution, mitigating crack veloci-
ties and stabilizing the process. Here, q∗λ = q∗0
almost everywhere after damage initiates, with
minor instabilities around x∗ ≈ 0.017, corre-
sponding to global instability onset (Fig. 1).

Additionally, heat of adsorption observables
serve as valuable indicators to differentiate
among various failure regimes, contrarily to
damage micro-states (Fig. 2).Even though large
kinetic temperatures allow the emergence of di-
rected cracks in the case of (non)-local damage
models, the underlying fracture mechanism can
be resolved by analyzing our statistical Grif-
fith’s criterion. Notably, a transition temper-
ature T ∗ ∈ [0.1, 1] exists where q∗λ < q∗0
for all damage states d∗ and the system be-
comes nucleation-driven. The magnitude of q∗λ
at high temperature in Fig. 3c suggests that the
presence long-range interactions increases the
transition temperature, due to their associated
restoring force.

5.2 Damage Isotherms
The classical fracture framework is extended

by testing the notched beam under a non-zero
chemical potential difference, ∆µ∗. This ∆µ∗

acts as a configurational pressure difference,
modifying the ground-state energy of the ref-
erence sample to an effective ground-state en-
ergy, ϵ̃∗0 = ϵ∗0 + ∆µ∗. This modification uni-
formly affects each adsorption layer in multi-
layer scenarios. Using this framework, we con-
struct damage isotherms that quantify the con-
figurational adsorbed volume as a function of
∆µ∗ at a fixed load (Fig. 4).

For LEFM, two distinct regimes are ob-
served (Fig. 4a). At low temperatures (T ∗ =
10−5), the adsorbed volume remains largely un-
affected by ∆µ∗ until a zero dissipation poten-
tial is reached (∆µ∗ = −1), where the adsorbed
volume drops sharply to zero. This behavior in-
dicates the dominance of directed fracture as the
primary failure mechanism across the range of
permissible chemical potential differences.

At higher temperatures (T ∗ = 1), the
isotherms display a linear correlation between
the adsorbed volume and configurational pres-
sure, converging to 1/2 before complete desorp-
tion occurs at ∆µ∗ = −1. This behavior sug-
gests a transition to random nucleation as the
dominant mechanism. For intermediate temper-
atures (T ∗ ≈ 0.1), gradual desorption begins
around ∆µ∗ ≈ −1/2, with notable inflection
points near ∆µ∗ = −0.8, indicative of material
reorganization. These behaviors are consistent
with Type I isotherms characterized by an infi-
nite Henry’s constant [15], reflecting the two-
state nature of LEFM systems.

The damage model isotherms (Fig. 4b) fur-
ther support the interpretation of CDM as an
extension of LEFM. At low kinetic tempera-
tures (T ∗ = 10−5), the damage isotherms ex-
hibit behavior similar to their LEFM counter-
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Figure 4: Damage isotherms (ρ,∆µ∗) measured at fixed loading for T ∗ ∈ [10−5, 1]. a) LEFM isotherms; b) Local
CDM: the configurational volume is equivalent to the monolayer thickness; c) Non-local CDM: fracture width influences
the desorption response.

parts, including an infinite Henry’s constant and
a sharp transition from fracture-driven desorp-
tion to complete volume desorption at ∆µ∗ =
−1. In contrast, the inclusion of long-range in-
teractions (Fig. 4c) introduces progressive ma-
terial desorption, highlighting the accessibility
of intermediate damage states.

At higher temperatures (T ∗ ≥ 0.1), a tran-
sition from Type I to Type V is observed, irre-
spective of the presence of long-range interac-
tions indicating multi-layer adsorption and cap-
illary condensation phenomena [31](Figs. 4b
and 4c).

6 CONCLUSIONS
This study introduces a statistical mechan-

ics framework for analyzing fracture and dam-
age processes in concrete materials, leveraging
the semi-grand canonical ensemble. By treat-
ing fracture as a monolayer adsorption process
and damage as a multi-layer adsorption phe-
nomenon, we have successfully linked classical
fracture energy concepts to statistical observ-
ables. The incorporation of long-range interac-
tions, as captured by curvature-enriched poten-
tials, proved pivotal in stabilizing damage prop-
agation and allowing accessibility to intermedi-
ate damage states.

Key findings include the ability of sta-
tistical observables, such as isosteric heats
of adsorption, to provide insights into fail-
ure mechanisms, effectively differentiating be-
tween regimes dominated by directed fracture
or random nucleation. Damage isotherms high-
lighted the influence of configurational pressure
on material degradation, confirming transitions

between fracture and gas-like desorption at var-
ious kinetic temperatures. Notably, the statis-
tical extension of Griffith’s criterion enables a
more nuanced understanding of energy dissipa-
tion, readily available as an output of our frame-
work.

Looking ahead, the ability to manipulate the
chemical potential difference ∆µ∗ to modify
the ground-state energy presents a promising
direction for future research. This extension
would enable the modeling of fracture phenom-
ena driven by energy variations, such as size
effects. By refining the predictive power of
this approach, the framework can be applied to
a broader range of quasi-brittle and heteroge-
neous materials, advancing the understanding
of fracture mechanics across diverse contexts.
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