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Abstract: The present paper deals with the brittle behaviours of high-performance reinforced 

concrete beams for rather low or high reinforcement percentages. In the former case, the loading drop 

is due to tensile concrete cracking, whereas in the latter it is due to compression concrete crushing at 

the opposite beam edge. For the former case, an analytical model is introduced (the Bridged Crack 

Model) that is able, through a peculiar rotational compatibility condition, to deduce the redundant 

closing forces applied by the longitudinal reinforcement to the crack faces. This model is conceptually 

relevant, since it permits to find the minimum reinforcement condition. The linear elasticity of the 

matrix and the LEFM stress-singularity at the crack tip provide a power-law for the reinforcement 

percentage as a function of the beam depth raised to –1/2. On the other hand, introducing a numerical 

model where concrete is considered as a cohesive softening material both in tension and compression, 

we can obtain a double size-scale brittle-to-ductile-to-brittle transition. By applying Dimensional 

Analysis and a best-fitting procedure, both in tension and compression, it is possible to find the scaling 

laws for minimum and maximum reinforcement percentages, respectively. The two exponents 

become equal to –0.15 and –0.25, respectively. The absolute values of both these exponents are lower 

than the absolute value of the reference LEFM exponent 0.50 (scaling of extreme severity) and agree 

with the available experimental results very well. The first has recently been assumed as the reference 

value in the AASHTO Guidelines for the minimum flexural reinforcement. Unfortunately, we can not 

affirm the same for the most well-known National and International Standard Codes. 

 

1 INTRODUCTION: BRIDGED CRACK 

MODEL AND THE PROBLEM OF 

MINIMUM REINFORCEMENT 

The lecture deals with the brittle behaviours 

of high-performance reinforced concrete beams 

occurring for particularly low or high 

reinforcement percentages. In the former case, 

the loading drop is due to tensile cracking, 

whereas in the latter it is due to compression 

crushing of concrete at the opposite beam edge. 

For the former case, a purely analytical model 

is introduced (Bridged Crack Model) that is 

able, through an original rotational 

compatibility condition, to deduce the 

redundant closing forces applied by the 

longitudinal reinforcement to the crack faces 

[1,2]. This elementary model is conceptually 

relevant, since it permits to define the minimum 

reinforcement condition (Figure 1) [3-7]. 
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Figure 1. Definition of minimum reinforcement 

 

 

The linear elasticity of the matrix and the 

LEFM stress-singularity at the crack tip provide 

a power-law for the minimum reinforcement 

percentage as a function of the beam depth raised 

to the exponent –1/2. 

 

2 QUASI-BRITTLE MATRIX: THE 

COHESIVE/OVERLAPPING CRACK 

MODEL 

On the other hand, introducing a numerical 

model where concrete is considered as a 

cohesive softening material (quasi-brittle) both 

in tension and compression 

(Cohesive/Overlapping Crack Model), we can 

obtain a double size-scale brittle-to-ductile-to- 

brittle transition [8-14]. When the steel 

percentage is too low (or the beam depth too 

small), the peak load is higher than the ultimate 

perfectly-plastic plateau (Figure 1), and a 

condition of vertical loading-drop prevails 

(hyper-strength). On the other hand, when the 

steel percentage is too high (or the beam depth 

too large), the ultimate perfectly-plastic plateau 

reduces its extension to zero (Figure 2) and a 

condition of vertical loading-drop prevails 

again, in this case due to crushing at the beam 

extrados (over-reinforcement) [15-18]. 

 

Figure 2. Definition of plastic rotation capacity 

and maximum reinforcement (ϑPL=0) 

 

 

 

2 MINIMUM AND MAXIMUM 

REINFORCEMENT CONDITIONS 

On these geometrical bases, by equating 

peak load and ultimate plastic load in the former 

case, and tending the plastic plateau extension 

to zero in the latter, it is possible to establish 

very robust criteria to determine minimum and 

maximum reinforcement percentages. By 

applying Dimensional Analysis and a best- 

fitting procedure, both in tension and 

compression, it is possible to find the scaling 

laws for minimum and maximum 

reinforcement percentages, respectively. The 

two exponents become equal to –0.15 (Figures 

3,4) and –0.25 (Figures 5,6), respectively. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Scale-dependent minimum 

reinforcement percentage condition 
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Figure 4. Design code provisions for the 

minimum reinforcement percentage 

condition 

 

 

 

Figure 5. Scale-dependent maximum 

reinforcement percentage condition 

 

 

 

Figure 6.  Design code provisions for the 

maximum reinforcement percentage 

condition 

The absolute values of both exponents are 

lower than the absolute value of the reference 

LEFM exponent 0.50 (scaling of extreme 

severity) and agree with the available 

experimental results very satisfactorily. The 

former has recently been assumed as the 

reference value in the AASHTO 

Guidelines 

[19] for the minimum flexural reinforcement 

(Figure 4). Unfortunately, we can not affirm 

the same yet for the most well-known 

National and International Standard Codes. 
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