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Abstract. The Lattice Discrete Particle Model (LDPM) is a discrete mesoscale model of concrete
that can accurately describe the macroscopic behavior of concrete during elastic, fracturing, soften-
ing, and hardening regimes. The LDPM formulation is obtained by modeling the interaction among
coarse meso-scale aggregate pieces between polyhedral cells (each containing one aggregate particle)
whose external surfaces are defined by sets of triangular facets. At each facet, a vectorial form of con-
stitutive model is used to simulate physical mechanisms such as tensile fracture, cohesion, friction,
etc. LDPM has been calibrated and validated extensively through the analysis of a large variety of
experimental tests. Numerical results show that it can reproduce with great accuracy the response of
concrete under uniaxial and multiaxial stress states in both compression and tension and under both
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quasi-static and dynamic loading conditions. In this presentation, we will give an overview of re-
cent implementations of LDPM in various computational platforms. LDPM was implemented in the
following software packages: Abaqus/Explicit via user subroutine; Project Chrono, a physics-based
modeling and simulation infrastructure based on a platform-independent open-source design; Cast3m
a multi-physics software developed by CEA; Open Academic Solver, an open-source software devel-
oped at Brno University; JAX-LDPM, an open-source GPU-based software in active development by
researchers from the Hong Kong University of Science and Technology; and FE-MultiPhys, devel-
oped at Virginia Tech. The different implementations will be compared by simulating typical failure
tests for concrete, including, unconfined compression test, three-point bending test, and direct tensile
test. Finally, the presentation will provide a vision for future LDPM developments that will likely be
implemented in these software packages.

1 INTRODUCTION
Cementitious composites, such as concrete,

are widely used in engineering applications.
These materials are heterogeneous and exhibit
quasi-brittle behavior, with their mechanical re-
sponse being significantly influenced by phe-
nomena such as crack initiation and propaga-
tion, the interaction and coalescence of dis-
tributed micro-cracks into a localized macro-
crack, the presence of confining pressure, and
the crack-bridging effects of fibers. Although
traditional continuum mechanics-based models
effectively capture global structural responses
under some loading conditions, they struggle
to simulate material heterogeneity and localized
damage under complex loading conditions.

Mesoscale models, which focus on coarse
aggregates as individual particles, offer a
more efficient alternative to continuum mod-
els. Among these, the Lattice Discrete Parti-
cle Model (LDPM), developed by Cusatis and
coworkers [1], is a significant advancement.
LDPM simulates heterogeneous materials at the
scale of major heterogeneity, such as coarse ag-
gregate pieces in concrete or grains in rocks
[2, 3, 4]. LDPM exhibits superior predic-
tive capabilities in comparison with continuum-
based models by inherently incorporating a ma-
terial length scale based on major material het-
erogeneity. This enables the accurate simula-
tion of nonlocal effects on strain-softening be-
havior without introducing numerical artifacts
or requiring the computational complexity of
gradient-based or integral nonlocal models [5,

6, 7, 8, 9, 10, 11, 12].
Traditionally, LDPM has been numerical

implemented using explicit time integration
solvers. Specifically, the central difference
scheme was successfully adopted in many dif-
ferent studies [13, 14]. It overcomes the con-
vergence challenges typically encountered with
implicit algorithms under strain-softening con-
ditions [15]. However, The central difference
scheme [16, 17, 18], is conditionally stable
which means it is only stable when the time step
size is kept below a certain critical value. In
standard LDPM simulations, the stable time in-
crement is approximately on the order of 10−7

seconds. However, this limits the total simu-
lation time to just a few seconds which makes
it impossible to model quasi-static loading sce-
narios lasting several minutes or sustained load-
ing cases lasting decades. To address this
challenge, various workarounds have been pro-
posed, wherein explicit solvers are utilized to
simulate at loading rates that exceed the actual
loading rate. Results of these kind of simulation
can be assumed realistic as long as the ratio be-
tween kinetic energy, Ek, and internal energy,
Wint is less than a threshold in the order of 10−3.

On the other hand, implicit solvers are un-
conditionally stable and thereby it enables the
integration of the response under quasi-static
and sustained loading conditions with signifi-
cantly larger time steps. However, the conver-
gence of the iterative algorithm at some time
step might become very slow, or even it can fail,
especially in case of a response featuring exces-
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sive strain softening response.
The main objective of this study is to pro-

vide a comparison of the performance of multi-
ple implicit and explicit solvers implemented in
various different software packages to solve the
LDPM equations of motion. The comparison is
made on the basis of typical tests carried out on
concrete samples.

2 GOVERNING EQUATIONS
LDPM adopts rigid body kinematics to de-

fine measure of strains at the interface of ad-
jacent polyhedral cells. These strain measures
(Equation 1) are computed at the centroid of
each facet k through a displacement jump, [[u]]k
such as,

ek =
1

lk
Pk · [[u]]k (1)

where [[u]]k = uJ +θJ × cJk −uI −θI × cIk, lk
is the tetrahedron edge length connecting par-
ticles I and J . Here u and θ denote transla-
tional and rotational degrees of freedom. Pk =
[nk mk lk]

T , and nk, mk and lk define the ap-
propriate orthonormal vectors of the local refer-
ence system (Fig.1d). The normal vector nk is
aligned with the straight connection of nodes I
and J , the tangential vectors can be chosen ar-
bitrarily. The vector cIk points from the node I
to the centroid of the kth facet.

Equilibrium is enforced by the linear and
angular momentum balance equations of each
polyhedral cell as in Equations (2)

∑
k∈FI

AkP
T
k · tk+VIbI = MI

u · üI +MI
θ · θ̈I (2a)

∑
k∈FI

Akc
I
k×

(
PT

k · tk
)
+VIrI×bI = IIu ·üI+IIθ ·θ̈I

(2b)
where FI contains all facets of a polyhedral

cell I , Ak = A0knk ·nk0 is the projected area of
a facet orthogonal to the corresponding tetrahe-
dron edge, nk0 is the true normal to the facet
plane, VI is the cell volume, rI is the vector
from the particle center to the cell centroid, bI

is the external body force, tk is the traction vec-
tor in local reference system, and MI

u, MI
θ, IIu,

and IIθ are inertia tensors of the cell, respec-
tively.

The LDPM governing equations are then
completed by a set of vectorial constitutive
equations relating tractions and strains: t =
T(e). In the elastic regime one has t = E · e
where E = E0diag(1 α α) where E0 and α are
model parameters known as effective normal
modulus and shear-normal coupling parameter.
LDPM nonlinear, inelastic constitutive equa-
tions (schematically shown in Fig.1e, f) have
been successfully formulated and validated for
concrete and other quasi-brittle materials in pre-
vious works by some of the authors to which
interested readers are directed for additional in-
formation [15].

3 NUMERICAL IMPLEMENTATIONS
LDPM can be implemented in a traditional

finite element codes using a tetrahedral mesh.
It uses linear tetrahedral element with rotational
and translational degrees of freedom. Each
tetrahedron has 12 facets resulting from the do-
main tessellation process (Fig. 1c). Various
existing publications [1, 13, 16] present de-
tailed derivation of the LDPM tetrahedral ele-
ment stiffness matrix, mass matrix, and force
vector, which is omitted here for brevity. All the
numerical implementations presented in this pa-
per are based on a Lagrangian formulation un-
der the assumption small displacements, small
strains and rotations.

After assemblage of all LDPM tetrahedral
elements, the general form of the equations of
motion for LDPM systems can be written as

M · q̈+ Fint(q) = Fext (3)

where M, Fint, Fext, and q denote mass ma-
trix, internal forces, external forces, and vec-
tor of degrees of freedom (combined u and θ),
respectively. In the elastic case Fint = K · q,
where K is the stiffness matrix. The mass ma-
trix can be consistent [17, 1] or diagonalized,
which is obtained by simply retaining the diag-
onal terms of the consistent mass matrix.
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Figure 1: (a) LDPM particles in a cubic geometry following placement procedure; (b) set of two
LDPM polyhedral cells composed of a single particle and their surrounding facets; (c) set of four
LDPM particles and associated facets; (d) original and projected LDPM facets; (e) typical traction
versus strain curves at the LDPM facet level; (d) typical normal traction versus normal strain curves
in compression.

3.1 Mesh Generations

All simulations performed in this study re-
lied on the LDPM geometrical input provided
by NU-FreeCAD. FreeCAD is an open-source
parametric 3D CAD software that is highly
suitable for a range of engineering and de-
sign tasks. Its integration with Python script-
ing offers powerful customization and automa-
tion capabilities, making it an effective back-
end tool for developing specialized workflows
essential in research and development environ-
ments [18]]. Using various Python scripts, the
particle placement, meshing, and tessellation
procedures described in Ref. [1] were imple-
mented. The output includes LDPM polyhe-
dral cell structures, tetrahedral meshes, and cor-
responding facet data, which are provided as
files that can be read and interpreted by vari-
ous solvers. The NU-FreeCAD Preprocessor is
distributed freely1 under the BSD 3-Clause Li-
cense.

3.2 Explicit and Implicit Solvers

LDPM is currently implemented in
ABAQUS Explicit via a VUEL subroutine [19],
Project Chrono [20], JAX [21], Open Academic
Solver (OAS) [22], CAST3M [23, 24, 25], FE-
MultiPhys [26] and Julia LDPM. The LDPM
implementation in these software packages is
described in details in Ref. [16]. The same re-
port [16] describes in depth the convergence
criteria and convergence threshold adopted in
the relevant implicit solvers. In all implicit
solvers, the time step size was chosen with the
assumption that the number of iterations would
typically be less than 50. However, higher num-
ber of iterations and possibly also acceptance of
non-converging results is allowed in some lim-
ited number of time steps. Tab. 1 reports basic
information relevant to the adopted solvers.

1github.com/Concrete-Chrono-Development/chrono-preprocessor
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Table 1: Basic information for the adopted solvers, more information is available in Ref. [16].

ID Software Solver Type Algorithm Mass Matrix
AE ABAQUS Expicit Central Difference Lumped
JA JAX-LDPM Explicit Central Difference Lumped
CI Chrono Implicit HHT Consistent
OA OAS Implicit Generalized-α Consistent
CA CAST3M Implicit static N/A
MP FEMultiPhys Implicit HHT Lumped
JU Julia LDPM Implicit static, Arc-Length N/A

4 NUMERICAL RESULTS

4.1 Hardening behavior in uniaxial strain
compressive test

First, a uniaxial strain test is simulated. In
the numerical analysis, a cylindrical specimen
(D = 100 mm, H = 200 mm) depicted in Fig-
ure 2a is subjected to compressive loading. The
displacement is applied by increasing velocity
progressively increased from 0 to u̇z=-5 mm/s
within 0.001 seconds, followed by a constant
velocity phase. All degrees of freedom at the
bottom nodes, except for rotation around the z-
axis, are restricted. Similar constraints are ap-
plied to the top surface, but it is free to move
in the direction of the applied velocity. Further-
more, lateral displacement is restricted for all
nodes along the outer surface of the cylinder.

Figure 2b shows the obtained stress versus
strain curves. The general response of test is
characterized strain-hardening due to collapse
of pores in the concrete material under com-
pression. All the different implementations
gives almost identical results as can be seen
from the figure. The Fig. 2c illustrates the num-
ber of iterations of implicit solvers, all implicit
solvers give stable results; however, the OA
solver requires an unusually high number of it-
erations for a single time step. Fig. 2d shows
the distribution of the volumetric strain (by CI
solver).

Figure 2: Dimensions of the specimen and ob-
tained simulation results for uniaxial strain test
specimens.

The time steps and computational times are
reported in Tab. 2 – note that the computational
servers and number of threads used for individ-
ual runs differ for each software. In this spe-
cific example, implicit solvers seem to be more
advantageous as they can utilize substantially
larger time steps. This efficiency is attributed
to the hardening behavior which demands a rel-
atively low number of iterations.

4.2 Fracturing behavior in dog bone tensile
test

The next example is a dog bone shaped spec-
imen subjected to direct tension. The specimen
is sketched in Fig. 3a, dimensions are B = H =
150mm, b = D = 50mm. All degrees of
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Table 2: Time step and total computational time for uniaxial strain test simulation.

AE JA CI OA MP CA JU

time step [s] 10−7 10−7 10−4 5× 10−4 2× 10−5 10−4 -
time [h] 2.2 1.6 2.0 0.33 0.67 12.3 2.0

freedom, except rotations around the z-axis, at
the bottom surface are constrained. The same
boundary conditions are applied to the nodes
on the top surface, with the exception of trans-
lation along the z-axis. A vertical velocity of
u̇z = 1mm/s is prescribed to the top surface.

The obtained stress-displacement curves are
reported in Fig. 3b, stress is related to the cen-
tral smallest cross-section, σ = P/bD. Almost
all the implementations provide almost identi-
cal responses, including the static solvers. The
number of iterations throughout the time for im-
plicit solvers is given in Fig. 3c, as can be seen
from the figure some of the steps in CI and
OA solvers do not converge. The kinetic en-
ergy is compared to the internal energy, and its
relatively small value indicates that the explicit
solvers exhibit stable behavior. Fig. 3d shows
crack pattern obtained by CI solver at the end
of the simulation. The response is character-
ized by only one single localized fracture de-
veloped in the specimen. The colors in the fig-
ure demonstrate total crack opening computed
as

√
w2

N + w2
M + w2

L with wα being the crack
openings in local reference system of individ-
ual facets.

Figure 3: Dimensions of the specimen and ob-
tained simulation results for dog bone tensile
test.

Table 3 provides time steps and total compu-
tational times for individual implementations.
The MP solver is the fastest in this case. The
computational times for both explicit and im-
plicit solvers are comparable, although the ex-
plicit implementations leverage a large number
of CPUs or GPUs.

5 CONCLUSIONS
In this study, several LDPM implementa-

tions have been compared using benchmarks
designed for different loading scenarios. Based
on the results obtained in this study, the follow-
ing conclusions can be drawn.

• Both implicit and explicit solvers can be
efficiently used to solve LDPM problems
dealing nonlinear material behavior char-
acterized by either strain-hardening or
strain-softening.

• It is a misconception that only explicit
solvers can handle the LDPM response
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Table 3: Time step and total computational time for dog bone tensile test.

AE JA CI OA MP CA JU
time step [s] 10−7 10−7 2× 10−5 2.5× 10−5 5× 10−4 10−4 -
time [h] 1.33 0.43 3.8 1.67 0.075 4.0 4.1

with excessive nonlinearity and complex
crack patterns. However, as the complex-
ity of the strain-softening response in-
creases, implicit solvers tend to be less
efficient, primarily due to growing con-
vergence difficulties.

• The choice of solver for computing the
LDPM response depends on the spe-
cific application. Implicit solvers are
more effective for linear response, strain-
hardening, or strain-softening with sim-
ple crack patterns, while explicit solvers
become more advantageous in cases
involving complex strain-softening and
crack patterns.
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[5] Z. P. Bažant. “Nonlocal damage theory
based on micromechanics of crack inter-
actions”. In: Journal of Engineering Me-
chanics 120.3 (1994), pp. 593–617.

[6] J. De Vree, W. Brekelmans, and M.
Van Gils. “Comparison of nonlocal ap-
proaches in continuum damage mechan-
ics”. In: Computers & Structures 55.4
(1995), pp. 581–588.

[7] G. Di Luzio. “A symmetric over-
nonlocal microplane model M4 for frac-
ture in concrete”. In: International Jour-
nal of Solids and Structures 44.13
(2007), pp. 4418–4441.

[8] R. H. Peerlings, R. de Borst, W. M.
Brekelmans, and J. de Vree. “Gradient
enhanced damage for quasi-brittle mate-
rials”. In: International Journal for nu-
merical methods in engineering 39.19
(1996), pp. 3391–3403.

[9] G. Pijaudier-Cabot and Z. P. Bažant.
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lic, May 25-28, 2015, Revised Selected
Papers 2. Springer. 2016, pp. 19–49.

[21] T. Xue, S. Liao, Z. Gan, C. Park, X.
Xie, W. K. Liu, and J. Cao. “JAX-FEM:
A differentiable GPU-accelerated 3D fi-
nite element solver for automatic inverse
design and mechanistic data science”.
In: Computer Physics Communications
(2023), p. 108802.
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