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Abstract. In this study, a Multiphysics-Lattice Discrete Particle Model (M-LDPM) framework that
deals with coupled-fracture-poroflow problems has been introduced. The M-LDPM framework uses
two lattice systems, the LDPM tessellation and the Flow Lattice Element (FLE) network, to represent
the heterogeneous internal structure of typical quasi-brittle materials like concrete and rocks, and to
simulate the material’s mechanical behavior and mass transport at the coarse aggregate scale. In this
study, the LDPM governing equations are revisited and modified to include the influence of fluid
pore pressure. The governing equations of the Flow Lattice Model (FLM) for pore pressure flow are
derived using mass conservation balances for both uncracked and cracked specimens. The proposed
M-LDPM framework was implemented using Abaqus user element subroutine VUEL for mechanical
behavior within the explicit dynamic procedure and user subroutine UEL for mass transport within
the implicit transient procedure. The coupling of the two models was achieved using Interprocess
Communication (IPC) between Abaqus solvers. The M-LDPM framework can simulate the variation
of permeability induced by fracturing processes by relating the transport properties of flow elements
with local cracking behaviors. The proposed model is validated by comparing the numerical results
with analytical solutions of classical benchmarks found in poromechanics literature.
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1 INTRODUCTION

The durability of materials used in construct-
ing buildings and infrastructure is governed by
a complex interaction between their mechanical
properties and multiphysical behaviors. While
structural design primarily focuses on meet-
ing strength and safety criteria, long-term per-
formance often deviates from initial predic-
tions, leading to unforeseen maintenance costs
and reduced service life. This highlights the
importance of integrating durability considera-
tions into design principles, accounting for fac-
tors such as environmental conditions, material
degradation, and load-induced wear. It is cru-
cial to incorporate the various factors affecting
material durability into design principles to pro-
duce a structure with an optimal lifespan and to
minimize their environmental footprint.

The interaction between fracture, mass trans-
port, and heat transfer is a well-studied multi-
physics phenomenon with significant implica-
tions for material behavior. Experimental stud-
ies have demonstrated that fracture permeability
is governed by a complex interplay of physical
processes and is influenced by factors such as
crack openings and roughness [1, 2, [3], chemi-
cal precipitation and dissolution[4), 5], and ther-
mal effects [6]. Among these, the presence of
open and interconnected crack patterns plays a
particularly critical role in determining perme-
ability. Extensive research highlights that frac-
ture permeability is strongly correlated with the
density, spacing, orientation, width, and length
of cracks within a material, emphasizing the im-
portance of understanding these parameters in
the analysis and prediction of transport proper-
ties in fractured systems [7, 8, |9].

This work develops a numerical framework
called the Multiphysics Lattice Discrete Parti-
cle Model (M-LDPM) to study the two-way
coupling behavior of porous flow and fracture
permeability of quasi-brittle materials in three-
dimensional (3D) simulations. The M-LDPM
framework has been verified by simulating var-
ious classical benchmark examples, including
1D Terzaghi’s consolidation and hydraulic frac-
turing.

2 LATTICE DISCRETE PARTICLE
MODEL (LDPM) FOR MULTI-
PHYSICS ANALYSES

The dual graph approaches have been widely
adopted in subjects such as physics, chemical
engineering, biological engineering, and mate-
rial sciences in the past several decades [[10, 11}
12, 13} (14, 15, [16]. In the field of porome-
chanics, Grassl [[17] introduced the concept of
dual lattice, incorporating aligned cracks and
conduit elements to effectively capture the im-
pact of crack openings on fluid flow. This
approach was subsequently extended to three-
dimensional analyses [18] and has been applied
in numerous studies. For instance, it has been
used to simulate cracking caused by rebar cor-
rosion [19] and hydraulic fracturing processes
[20, 21, 22]. Li et al. [23]] expanded the dual
lattice framework to model shale fractures, in-
corporating the effects of mechanical volumet-
ric strain rates on pressure. Similarly, Shen
et al. [24, 25] employed the approach to ac-
curately simulate thermal spalling and thermal
strains in concrete under multiaxial loads at
high temperatures. Yang et al. [26, 27] fur-
ther applied the dual lattice concept to model
volumetric strain and cracking in concrete in-
duced by alkali-silica reactions. These studies
demonstrate the versatility and effectiveness of
the dual lattice framework in capturing complex
multiphysical phenomena in fractured systems.

A typical usage of topologically dual lattice
systems is the Multiphysics-Lattice Discrete
Particle Model (M-LDPM) for the multiscale
multiphysics analysis of granular-dominant
quasibrittle materials (e.g., concrete, rock). M-
LDPM is formulated in a discrete poromechan-
ics setting by adopting two coupled dual lattices
simulating mechanical and transport behaviors,
respectively. The model adopts an a priori dis-
cretization of the internal structure of the mate-
rial at the mesoscale, which is the length scale
of major material heterogeneities.
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2.1 Governing equations

2.1.1 LDPM Kinematics and Constitutive
Laws

In the LDPM formulation, adjacent poly-
hedral cells interact through shared triangular
facets. Three strain measures, one normal com-
ponent and two shear components, are defined
using displacement jump, [uc], at each facet
center as:

1

1 1
eN = ZHT'HUC]]; ey = ZmT-[[uC]]; e = be~[[uC]]

(1)
where ¢ = tetrahedron edge length associ-
ated with the facet; n is a unit vector normal
to each facet, and m and b are two mutually
orthogonal unit vectors orthogonal to n. The
facet stress vector applied to the solid phase,
t = tyn + tyym + tgb, is calculated through
appropriate constitutive laws, for more details
see [28,129,30] .
In the elastic regime, the mechanical facet
stress components are proportional to the cor-
responding strain components:

tN EN 0 0 EeN
tB 0 0 EB (5]

where E'y = Ej is the normal modulus, E); =
Ep = «kFj is the shear modulus, and o« =
normal-shear coupling coefficient.

Beyond the elastic limit, the constitutive law
is designed to capture three distinct nonlinear
behaviors that govern material response. The
first source of nonlinearity arises from fractur-
ing and cohesive behavior under tensile condi-
tions, characterized by positive normal strain
(exy > 0). The second nonlinear phenomenon
is associated with pore collapse and material
compaction, occurring under compressive con-
ditions ( ey < 0). Lastly, frictional behavior
under compression introduces another source of
nonlinearity, which is effectively modeled using
a non associative incremental plasticity.

The facet stresses calculated through the
constitutive laws represent the stresses carried

by the solid phase. Equilibrium considerations
at the facet level allow for the reasonable as-
sumption of a parallel coupling between the
stresses carried by the solid phase and those
by the fluid phase. In this work, the effective
stress concept from Biot’s theory of poroelas-
ticity [31] is adopted, and the total stress vector
on each facet is computed as

ttotal —t— bteigen (3)

where b is the Biot coefficient, and t**" = pn,
p is the magnitude of effective pore pressure of
fluid. The negative sign in Eq.[3]comes from the
pressure sign convention, which is positive for
the fluid and negative for the solid.

The equilibrium is obtained through the lin-
ear and angular momentum balance equations
of each polyhedral cell, as follows:

> At + Vb = Mjiy + M{§; ()
keFr

Z Apep x 2 + Vil x b =T, + I,

keFr

)
where F7 is the set of facets surrounding the
node P; (located inside cell I); Ay is the pro-
jected area of k-th facet orthogonal to the cor-
responding tetrahedron edge, V' is the cell vol-
ume, c,ﬁ is the distance between facet centroid
and particle center, a’ is the distance between
the cell centroid and the particle center, b is the
external body force, t is the stress traction vec-
tor, M/ and I (i = u, ) are inertia matrices,
and u; and ¢; are displacement and rotation
vectors, respectively. In the current implemen-
tation, an explicit dynamic algorithm is adopted
to solve the equations above by a quasi-static
method.

2.1.2 Discrete Formulation of Fluid Flow

Following Li et al. [23]], Flow Lattice El-
ement (FLE) is formulated under the assump-
tion of full saturation, constant ambient temper-
ature, considering slightly compressible New-
tonian fluid. According to the settings de-
picted in [32]], each FLE connects the centroids
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of two adjacent LDPM tetrahedra in the un-
deformed configuration: named tet P P, P3Py
and tet P, P,P3Ps (Fig. [I] a). The two adja-
cent LDPM tetrahedra have a common triangu-
lar face Ay with a normal n, across which an
FLE connects the tetpoints /Ny and N, located
inside the two tetrahedra. A directional vector
e orienting from N; to N, represents the flow
direction in the FLE. The FLE is associated to
two pyramidal volumes, V; and V5, identified
by the pOil’ltS Pl, PQ, P3, N1 and Pl, Pg, Pg, NQ.
The volumes can be computed as V; = Al;/3
(¢t = 1,2), where A = |n - e|A is the pro-
jected area of triangular cross-section P P, Ps
(Ap) in the direction e; the segment lengths /;
are associated with the total length of FLE /[,
which intersects the cross-section P; P P3 (Ap),
one can define the length proportionality coef-
ficients which satisfy the relations g; = [;/I
(1=1,2).

Figure 1: Diagrams of the Flow lattice element (FLE):
a) FLE geometry, b) the associated LDPM facets; c) the
cracked triangle face and the illustration of normal crack
opening.

Fluid Flux for Uncracked Material

The mass of fluid in the uncracked control vol-
ume V; (i = 1,2) can be written as M, =
my;V; in which my; is the fluid mass content,
defined to be the fluid mass per unit refer-
ence volume. The change in fluid mass content
can be related to the increment of fluid content
G = (my; —myo) /pro, where myg and pyg are
fluid mass content and density in the reference
state, respectively. For slightly compressible
fluids, the fluid density in the current state can
be related to pyo by defining the bulk modulus
Ky; one can write py; = pyo [1 + (pi — po)/ K]
(1 = 1,2), where p; is the current fluid pressure
in V;, and py is the initial/reference pressure.

According to the classic theory of porome-
chanics [31, |33[], the increment of fluid con-
tent, (;, can be expressed as a linear combina-
tion of the volumetric strain, e,;, of the solid
phase defined as the relative variation of the
solid volume, and the fluid pressure, p;, as (; =
beyi + pi /My, where M), denotes the Biot mod-
ulus. It is worth pointing out that b and M}, may
vary due to material heterogeneity. The effect
of this variation is insignificant in the context of
this paper and will be neglected thereinafter.

One can write the time variation of the fluid
mass in the control volume V; (i = 1, 2) as:

M}u = Pfo (bém + &> Vi (6)

The mass flux through the uncracked area A
from V; into V5 reads Q) ¢, = Aj,, the flux den-
sity j, can be obtained by using Darcy’s law,
which can be written as:

Jp = _ﬁf_fgp (7)

where x¢ and 1y denote the intrinsic perme-
ability of the material and the fluid viscosity, re-
spectively, pr = gaps1 + g1ps2 1s an estimate of
the weighted average density of fluid in the vol-
ume V', and g, is the discrete estimation of pore
pressure gradient from V; into V5.

Fluid Flux for Cracked Material
The influence of cracks on the FLE can be con-
sidered in two parts: (1) the fluid mass stored
in the cracked volumes, and (2) the fluid flux
through the cracked surfaces. The fluid mass
stored in the cracks is M}, = py;V.;, where
the cracked volume can be expressed as V,; =
Z?Zl 40> Ay; are the areas of six LDPM
facets associated with the FLE A}, A},, and
A’ belonging to V; (i = 1,2), and 0y, are the
normal crack openings, as shown in Fig. [Ib and
c.

The time variation of the fluid mass in the
cracks can be written as:

“pi+ ppiVi (8)

N, =
fe PfoKf

The fluid mass flux, @ ¢, from V; into V5 as-
sociated with the cracks, can be approximated
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by assuming a steady laminar flow between two
crack surfaces with a cross section of length [;
and width 0%; with j = 1,2, 3, where Iy; repre-
sents the intersection of the j th facet with the
tetrahedron face A (Fig.[Ip). In this case, the so-
lution of a two-dimensional Poiseuille flow in a
channel, known as Poiseuille’s formula, can be
adopted [34]]. One can write

_ K¢ P1 — P2
Qe =pr—A 9
fe =P ;i
where
1 92 g1 -
= — | =+ =— 10
: 1M(Q+QJ (10)

and I; = >0, Iy ( jvj)g (i = 1,2). Connec-
tion in series of the cracked permeabilities in
V.1 and V5 is assumed for deriving Eq.

The total fluid mass and total fluid flux can
be obtained by adding the contributions from
the uncracked and cracked domains. By collect-
ing all terms introduced above and normalized
both left and right hand sides with the reference
fluid density pyq, the mass balance equations for
volume V; and V5 can be written as:

) D1 Vapr  ppVer
bev—l-)V—i- + FQru+Qpe=0
( ' My ! Ky Pro @ @

) D2 Voo praVeo
befu + N r V + + - [T c = O
( 2 Mb) TR, Pf0 @re=Qs
(1D

2.2 The Lattice Discrete Particle Model
(LDPM) implementation
Following the discrete formulation of the
FLE [32], by defining the discrete estimation of
pore pressure flux in Eq. (/| as:

gp=¢e-n(py—p1)/l (12)

where pi,po are the values of fluid pressure
at points N; and Ns, respectively, the govern-
ing equations for a FLE volume equivalent to
Egs. |l I{can be rewritten as:

(bevlﬂLpl)VlJr 1P1 Af LS (p—p1) =0

M, Ky Pfo l

L Vebs ppls A
(bévg-i-pz)VQ‘F 2Pz | PI2T2 2 (py —py) =0

Mb Kf Pfo l

(13)

where the effective permeability reads £ =
pr (ko + Kc) / (propes). The discrete-type gov-
erning equations in Eqs. [I3|can then written in
the matrix form, which reads:

Mp+Kp+S=0 (14)
where,

M=V { nev ] (15)

K:?[f§;§} (16)

S =V [ 925" (17)

p=[pp] (18)

where C; = M, ' + V. (K;V;)™" and S; =
beyi + priVe (,ofoVi)_l. It is worth observing
that, to reduce the memory requirements of the
calculations, it is possible, without significant
difference in the results, to substitute C; and
Si(i = 1,2) with the volume averages C' =
9101 + g2C5 and S = 151 + g25.

In this project, the Backward Euler method
was employed for time integration of the flow
problem. Unlike continuous or other discrete
models that utilize the same nodal sites for
both mechanical and flow problems, dual lat-
tice systems assign separate nodes for each
system. This distinction introduces challenges
when employing different solvers, such as ex-
plicit for mechanical computations and implicit
for flow, since their time step sizes can vary
significantly. In summary, the use of distinct
meshes and different time scales further com-
plicates the coupling process.
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3 TWO-WAY COUPLING
WORK

FRAME-

The multiphysics problems can be solved
in the so-called M-LDPM framework with the
help of Interprocess Communication (IPC). Un-
der this framework, each physical solver can be
considered as an independent process. The pe-
riodic data communication between processes
allows a sequential coupling mechanism. The
spatial mappings and temporal synchronization
between the two processes allow the coupling
to run smoothly and robustly.

In the two-way coupling procedure, the
algorithms are implemented through Abaqus
user-defined elements VUEL (Explicit) for the
LDPM and UEL (implicit) for the FLM. The
two-way communication between LDPM and
FLM during a single integration time step in-
volves a sequence of steps executed in temporal
order for each model. For LDPM, the process
begins with updating the elements nodal posi-
tions and geometries. This is followed by ex-
changing data with the coupled analysis (FLM).
Subsequently, strains and stresses are computed
based on the constitutive models and multi-
physics coupling mechanisms, finally internal
forces are calculated in the LDPM elements.For
the FLM, the workflow starts with updating el-
ement field variables, such as nodal pore pres-
sures. Next, data is exchanged with the cou-
pled analysis (LDPM). The tangential stiffness
matrix (e.g., the Jacobian or AMATRX matrix)
and the right-hand side vector (RHS vector) are
then computed. Finally, an iterative process is
performed to compute the increment until con-
vergence is achieved, see Fig. [2]

Named pipes
(or other IPC tools)

Figure 2: schematic diagram of M-LDPM two-way cou-
pling procedure.

There are two typical coupling schemes: (1)
parallel explicit coupling scheme (a.k.a. Jacobi
scheme), both simulations are executed con-
currently, exchanging fields to update the re-
spective solutions at the next target time. This
scheme is more efficient in the use of comput-
ing resources; less stable than the sequential
scheme; (2) sequential explicit coupling scheme
(a.k.a. Gauss-Seidel scheme), the simulations
are executed in sequential order. One analysis
leads while the other analysis lags the simula-
tions. The parallel explicit coupling (Jacobi)
scheme is used in this work.

In coupled processes with significantly dif-
ferent time scales, synchronization can be
achieved using techniques like a time scaling
factor, ktime, or subcycling. In subcycling,
the implicit analysis with a larger time incre-
ment ramps loads over the coupling step, while
the explicit analysis with a smaller time incre-
ment applies constant loads throughout the step.
To address the large time increment discrepan-
cies and optimize computational efficiency, this
work employs both time scaling and subcycling
approaches.

4 NUMERICAL RESULTS

The first numerical example is the classical
one-dimension consolidation problem of Terza-
ghi [35]. A 0.5 x 0.1 x 0.1 m® prism equiva-
lent to infinite soil layer of thickness L = 0.5
m on a rigid impervious ground, is loaded by a
stress o, = t; on the top surface at z = 0 under
drained condition, the Dirichlet boundary con-
ditions are p = 0 at z = 0 for the pore pressure,
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and u, = Oat 2 = L, u, = u, = 0 at all lat-
eral surfaces for the displacement. A schematic
diagram of the numerical example is shown in
Fig.[3p. LDPM and FLM meshes generated are
shown in Fig. 4

F——2z  05x0.1x0.1m?prism
a)
-]
tz :: u, =0
—
p*=0 uy = uy, = 0 (lateral surfaces)
b)
=)
e uz =0
3
=0
L=05m

Figure 3: Two-way coupling verification 1: Terzaghi’s
1D consolidation, simulation settings: a) loading by pres-
sure, b) loading by traction.

Figure 4: The LDPM tessellation of the prism’s geome-
try for Terzaghi’s 1D consolidation: a) LDPM mesh, b)
FLM mesh.

The two-way coupling simulation results of
loading mode 1 and 2 are presented in Figs. [f]
and [/ respectively. Dimensionless fluid pres-
sure p/p*, as well as z displacement profiles
u, versus dimensionless coordinate x = z/L
at different time instants ¢ = 1/16tgy, 1/8tgm,
1/4tgm, 1/2tgm, and tgp. It turned out that nu-
merical model results agree well with the ana-
lytical solution, showing the validity of the two-
way coupling framework on the simulation of
poroelasticity problems.

Figure 5: Radial expansion of a pressurized hollow cylin-
der, simulation settings adopted from [36].

The second numerical example is the po-
tential fracture formation caused by continuous
fluid injection into the hollow cylinder. The ge-
ometry of the hollow cylinder can be described
by a r — 0 — z cylindrical coordinate system with
the inner surface at r = r; = 0.1 m, the outer
surface at » = r, = 0.725 m, and the thick-
ness d = 0.1 m, as shown in Fig.[5] The values
of parameters used in this example are summa-
rized in Tab. [T} note that we present results for
low-permeability rocks with oy =1.97E-20 m?.
For all fracture analyses, v = (.1 was assumed.

a3
AR w— b) 0.035

© M-LDPM

time increases
At tg, (stable time)

/

— Analytical
© M-LDPM

R R T
Figure 6: Terzhagi’s consolidation, loading by trac-
tion: a) fluid pressure versus dimensionless coordi-
nate x = z/L at various times of simulation ¢ =
1/16tgim, 1/8tsim, 1/4tsim, 1/2tsim, tsim» and b) z displace-
ment profiles versus dimensionless coordinate x = z/L
at tgim.-
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b) o

-0.002

time increases
-0.004

__-0.006

=
>
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p/p" [MPa/MPa)

-0.012

-0.014 — Analytical

— Analytical
° M-LDPM — ° M-LDPM
0 -0.016
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 08 1

Figure 7: Terzhagi’s consolidation, loading by fluid
pressure: a) dimensionless fluid pressure p/p* ver-
sus dimensionless coordinate x = z/L, and b) z
displacement profiles u, versus dimensionless coordi-
nate Y = z/L at various times of simulation ¢ =
1/16tsim; 1/Stsima 1/4tsim7 1/Ztsim7 tsim-

Table 1: Input relevant parameters for two-way coupling
simulations of hydraulic fracturing of a pressurized hol-
low cylinder

Description Symbol [unit] Value
Density of fluid py [kg/m3] 1.0E+03
Dynamic viscosity of fluid Hy [Pas] 8.9E-04
Bulk modulus of fluid Ky [Pa] 2.15E+09
Intrinsic permeability ) [m2] 1.97E-20
Biot modulus My, [Pa] 6.1728E+10
Biot coefficient b[-] 0/0.5/1.0
Reference pressure po [Pa] 0.0
Density of solid Ps [kg/m3] 2.46E+03
Mesoscopic normal modulus of solid FEg [Pa] 4.648E+10
Mesoscopic normal-to-shear coefficient of solid a[-] 0.5455
Mesoscopic tensile strength of solid o¢ [Pa] 4.648E+06
Mesoscopic tensile characteristic length of solid I+ [m] 0.2
Mesoscopic normal-to-shear strength ratio of solid rst[-] 4.1
Mesoscopic softening exponent of solid ni [-] 0.2
Mesoscopic compressive yielding stress of solid oo [Pa] 1E+08
Mesoscopic initial internal friction coefficient of solid o [-1 0.2
Mesoscopic asymptotic internal friction coefficient of solid Moo [-] 0.0
Mesoscopic transitional normal stress of solid ono [Pa] 6E+08
Mesoscopic softening exponent of solid Ho [-] 0.2
Time scaling factor Kime [-] 9.0E+06
Total simulation time tim [s] SE-02

The simulation results until the divergence of
the solver due to the fracturing are presented in
Fig. [§ in the form of normalized pressure py;
versus normalized radial displacement u at the
inner boundary for b = 0, 0.5 and 1. It can
be observed that, Biot’s coefficient has a strong
influence on pressure—displacement curves in

Fig.[8

15
u; [-] x1073

Figure 8: M-LDPM simulations of hydraulic fracturing
of a pressurized hollow cylinder, normalized pressure
Dy; versus normalized radial displacement # at the in-
ner boundary at » = r;. The circles indicate moments
at which the crack patterns are shown in Figs.[9]and [I0]
for b = 0 and 1, respectively

The circles in Fig. [§]indicate the moments at
which the crack patterns are presented in Figs. 9]
and for b = 0 and b = 1, respectively.
According to Figs. 0] and [I0] the crack pat-
terns change with Biot coefficient obviously:
there is more diffused microcracking appear-
ing at the critical pressure around the central
hole for low Biot coefficients. This is due
to different pressure magnitudes sustained by
models with different Biot coefficients. When
comparing cracking at the same pressure level,
higher Biot coefficients result in more diffused
cracking since fluid pressure reduces both radial
and circumferential compressive stresses in the
solid. The critical pressure for larger Biot coef-
ficients is substantially lower.

I 1.5e+01
10

5

Total crack opening

I 0.0e+00

Figure 9: Crack patterns (crack opening contours) for un-
coupled condition (b = 0) at three moments shown in

Fig.[§
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4.5e-01
|

0.3
0.2

tal crack opening

0.1

[4]

g
0.0e+00

Figure 10: Crack patterns (crack opening contours) for
b = 1.0 at three moments shown in Fig.

[5]
S CONCLUSION
This study presents a comprehensive
Multiphysics-Lattice Discrete Particle Model
(M-LDPM) framework designed for coupled
fracture-poroflow problems in saturated envi-
ronments. It integrates dual lattice systems: the
LDPM tessellation for discrete particle interac-
tions and the Flow Lattice Element (FLE) net-
work for fluid flow simulations. The M-LDPM
framework is implemented using Abaqus user
element subroutines, with data communica-
tion between solvers facilitated by Interprocess
Communication (IPC). Validation of the M-
LDPM framework is performed through com-
parative analyses with analytical solutions of
classical poromechanics benchmarks, demon-
strating the framework’s ability to accurately
simulate both one-way and two-way coupling
mechanisms with high fidelity. The M-LDPM
results are align well with analytical solutions
across varying Biot coefficients, and the frame-
work effectively captures hydraulic fracturing,
illustrating the interaction between crack prop-
agation and fluid flow.

[6]

[7]

[8]
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