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Abstract. The Lattice Discrete Particle Model (LDPM) is highly effective in capturing the frac-
ture behavior of concrete, especially at the scale where significant material heterogeneities, such as
coarse aggregates, dominate. This model constructs a meso-structure of concrete using a stochastic
approach to generate spherical particles. This process is guided by several key parameters, includ-
ing cement content, water-to-cement ratio, and the size range of aggregates, from the largest to the
smallest. Delaunay tetrahedralization is employed to establish the lattice framework, targeting the
centers of aggregates, which results in formation of polyhedral cells surrounding each aggregate par-
ticle through a 3D domain tessellation. LDPM is integrated into Project Chrono, an open-source
multi-physics simulation engine and implemented as a user element code in Abaqus. In this study,
mechanical characterization of the 3D printed concrete samples will be investigated. A 3D scanner is
utilized to ensure accurate geometric representation of the printed sample geometries, which are then
imported into the FreeCAD preprocessor for meso-structure generation. The simulations of various
mechanical tests are conducted, such as unconfined compression and three-point bending tests, with
the ability to apply loads at different orientations relative to the printing direction. The model’s ac-
curacy is validated by comparing the simulation results with experimental data, ensuring that it can
accurately capture the behavior of 3D printed ultra-high-performance concrete under different loading
conditions.

1 INTRODUCTION

3D concrete printing has experienced rapid
growth in recent years, increasing the need
for advancements in design, construction, and
quality assurance technologies. However, the
hardened behavior of printed concrete ex-
hibits anisotropy, complicating comparisons
with standardized tests, as cast samples fail
to replicate the behavior of printed specimens.
Despite progress in experimental characteriza-
tion, the concrete 3D printing industry will not

achieve its full potential without robust numeri-
cal models to guide decisions regarding design.
The printing process involves numerous vari-
ables affecting mechanical performance, and
current numerical models fall into three main
categories: continuum-based, interface-based,
and discrete methods [1].

Continuum-based models overlook printed
layers, using simplified techniques to model
anisotropy, and struggle to represent interface
zones and complex effects [2]. Interface-based
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models account for anisotropy through adhesive
properties of the interface but rely on simplified
damage laws, limiting their applicability [3].
Discrete models, which can account for discon-
tinuous and heterogeneous effects of concrete
and other quasi-brittle materials, have been im-
plemented in 3D printed concrete applications
in the form of discrete element method (DEM)
[4], and lattice models [5]. One of the powerful
discrete model, Lattice Discrete Particle Model
(LDPM), which has been successfully used in
modeling concrete in a wide array of loading
configurations [6–10]. It provides detailed in-
sights into modeling heterogeneous material be-
havior, offering higher accuracy with a reason-
able computational cost [6, 7].

The motivation for this research study is to
provide steps which help bridge the gap be-
tween large scale structural testing and small
scale mechanical characterization of 3D printed
concrete. We introduce a methodology to eval-
uate strength of printed concrete samples while
preserving surface geometry, crucial for captur-
ing crack initiation and propagation. Numerical
models which are set up using lidar-scanned ge-
ometries offer deep insights into failure mech-
anisms, enabling optimization of 3D printed
samples. These models facilitate efficient,
small-scale experiments to study anisotropic
behavior, surface defects, and applications in
larger structures, supporting improved design
processes in 3D printed concrete.

2 GOVERNING EQUATIONS

Creating LDPM internal structure starts by
inserting particles that represent the coarser ag-
gregate pieces in the concrete specimen. These
particles are randomly generated based on a
given particle size distribution function (such as
the Fuller curve) that suits the concrete’s mix
design. A particle generation algorithm ensures
there are no overlaps between the newly created
particle and previously added particles and the
surface nodes of the specimen (Fig. 1a).

Figure 1: (a) LDPM particles in a cubic geometry follow-
ing placement procedure; (b) set of four LDPM particles
and associated facets; (c) set of two LDPM polyhedral
cells composed of a single particle and their surrounding
facets; (d) set of two facets interacting in tension-shear
and pure shear.

Subsequently, Delaunay tetrahedralization is
carried out using particle center position to cre-
ate a mesh of tetrahedra (Fig. 1b). The tetra-
hedral mesh defines the lattice system and pro-
vides the connections between particles. The
next stage involves identifying potential fail-
ure and damage locations at the selected length
scale. A tessellation process is performed to de-
termine the surfaces through which interaction
forces are exchanged between adjacent parti-
cles (Fig. 1c). The tessellation of a tetrahedron
is obtained by a set of triangles in which each
triangle is formed by a point on a tetrahedron
edge, a point on a tetrahedron face, and a point
inside the tetrahedron (Fig. 1b). At the end of
this procedure, a set of polyhedral cells, each
including one aggregate piece, is obtained (Fig.
1b). For full description of LDPM geometry,
see Ref. [6, 7].

The interaction between particles is simu-
lated through lattice struts. The mechanical in-
teraction on the lattice strut facet is character-
ized by both normal and shear tractions. These
tractions are calculated using strain measures
(Equation 1) that computed at the centroid of
each facet k through a displacement jump, [[u]]k
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such as,

ek =
1

lk
Pk · [[u]]k (1)

where [[u]]k = uJ +θJ × cJk −uI −θI × cIk, lk
is the tetrahedron edge length connecting par-
ticles I and J . Here u and θ denote transla-
tional and rotational degrees of freedom. Pk =
[nk mk lk]

T , and nk, mk and lk define the ap-
propriate orthonormal vectors of the local refer-
ence system (Fig.1d). The normal vector nk is
aligned with the straight connection of nodes I
and J , the tangential vectors can be chosen ar-
bitrarily. The vector cIk points from the node I
to the centroid of the kth facet.

Equilibrium is enforced using the linear and
angular momentum balance equations of each
polyhedral cell as in Equations (2)

∑
k∈FI

AkP
T
k · tk+VIbI = MI

u · üI +MI
θ · θ̈I (2a)

∑
k∈FI

Akc
I
k×

(
PT

k · tk
)
+VIrI×bI = IIu ·üI+IIθ ·θ̈I

(2b)
where FI contains all facets of a polyhedral

cell I , Ak = A0knk ·nk0 is the projected area of
a facet orthogonal to the corresponding tetrahe-
dron edge, nk0 is the true normal to the facet
plane, VI is the cell volume, rI is the vector
from the particle center to the cell centroid, bI

is the external body force, tk is the traction vec-
tor in local reference system, and MI

u, MI
θ, IIu,

and IIθ are inertia tensors of the cell, respec-
tively.

The LDPM governing equations are then
completed by a set of vectorial constitutive
equations relating tractions and strains: t =
T(e). In the elastic regime one has t = E · e
where E = E0diag(1 α α) where E0 and α
are model parameters known as effective nor-
mal modulus and shear-normal coupling param-
eter.

2.1 Fracturing behavior
Fracturing behavior occurs when the normal

strains are positive (eN > 0). Traction compo-

nents are obtained [11];

tN =
t

e
eN ; tM = α

t

e
eM ; tL = α

t

e
eL (3)

The effective stress t = [t2N +(t2M + t2L)α]
1/2

is assumed to be incrementally elastic, ṫ = E0ė,
and it should satisfy the inequality 0 ≤ t ≤
σbt(ϵ, ω), where σbt(e, ω) is a strain-dependent
boundary and it can be expressed as:

σbt(e, ω) = σ0(ω) exp[−H0(ω)
⟨ϵmax − ϵ0(ω)⟩

σ0(ω)
]

(4)
where the brackets ⟨x⟩ = max(x, 0). This
boundary σbt undergoes exponential evolution
in relation to the maximum effective strain at-
tained emax =

(
e2N,max + αe2T,max

)0.5 . The
coupling variable, ω, denotes the degree of
interaction between shear and normal loading
which can be expressed as:

tanω =
eN√
αeT

=
tN

√
α

tT
(5)

The function σ0(ω) is the strength limit for the
effective stress and is defined as

σ0(ω) = σt
− sin(ω) +

√
sin(ω)2 + 4α cos(ω)2/r2st

2α cos(ω)2/r2st
(6)

where rst is the ratio between the shear strength
and the tensile strength, rst = σs/σt H0 is the
softening modulus, which is assumed to follow
a power function of the internal variable ω and
expressed as,

H0(ω) = Hs/α + (Ht −Hs/α)(2ω/π)
nt (7)

where Ht = 2E0/(lt/l − 1) and lt =
2E0Gt/σ

2
t .Gt is the fracture energy, and l is the

length of the tetrahedron edge corresponding to
the current facet. Hs = rsE0. In most cases,
rs = 0.

2.2 Compressive behavior
For compressive behavior (eN < 0),

the normal stress satisfies the inequality
−σbc(eD, eV ) ≤ tN ≤ 0 [11].The normal stress
tN is assumed to be incrementally elastic within
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the boundary, ṫN = ENcėN . ENc is the loading-
unloading stiffness that increases during un-
loading.The boundary limit of compressive be-
havior, σbc(eD, eV ), is assumed to be a function
of the volumetric strain eV and the deviatoric
strain eD. The compressive boundary can be ex-
pressed as

σbc =

{
σc0 −eDV ≤ 0

σc0 + ⟨−eDV − ϵc0⟩Hc 0 ≤ −ϵDV ≤ ϵc1
σc1 exp [(−eDV − ϵc1)Hc/σc1] otherwise

}
where eDV = eV + βeD (β is a material pa-
rameter) and ϵc0 = σc0/E0 is the compaction
strain at the beginning of the pore collapse,
ϵc1 = κc0ϵc0 is the compaction strain at which
rehardening begins, κc0 is the material parame-
ter governing the rehardening and σc1(rDV ) =
σc0 + (ϵc1 − ϵc0)Hc(rDV ).

Hc(rDV ) is the initial hardening modulus
and can be formulated as

Hc(rDV ) =
Hc0 −Hc1

1 + κc2 < rDV − κc1 >
+Hc1

(8)
where Hc1 is calibrated with experimental data
and the strain ratio rDV is calculated as

rDV =

{
− |ϵD|

ϵV −ϵV 0
, ϵV ≤ 0

|ϵD|
ϵV 0

, ϵV > 0

with ϵV 0 = 0.1ϵc0.

2.2.1 Frictional behavior

In the compression case, the shear strength
increases due to frictional effect. The frictional
phenomena simulated by classical incremen-
tal plasticity, such as: σ̇M = ET (ϵ̇M − ϵ̇pM),
σ̇L = ET (ϵ̇L − ϵ̇pL). The plastic strain incre-
ments are assumed to obey the normality rule
ϵ̇M = λ̇∂ϕ/∂σM , ϵ̇L = λ̇∂ϕ/∂σL. The plastic
potential can be expressed as ϕ =

√
σ2
M + σ2

L−
σbs(σN), where the shear strength σbs is calcu-
lated as [11]
σbs = σs+(µ0−µ∞)σN0−µ∞σN−(µ0−µ∞)σN0 exp(σN/σN0)

(9)

where σs is the cohesion (shear strength), µ0

and µ∞ are the initial and final friction coeffi-
cients, and σN0 is the normal stress at which the
friction coefficient transitions from µ0 to µ∞.

3 NUMERICAL SIMULATIONS

A computational framework for 3D-printed
concrete is developed and calibrated. This
framework incorporates mechanical character-
ization data from experiments and geometric
data from lidar scans of printed concrete to pre-
dict meso-scale concrete failure. This computa-
tional approach aims to reduce laboratory test-
ing requirements, potentially leading to signifi-
cant reductions in time, cost, and embodied car-
bon.

3.1 Model Parameters and Calibration

Calibration of the model requires two sets of
parameters, the first being associated with prop-
erties of the concrete meso-structure. These in-
clude the cement content, c, water-cement ratio,
w/c = 0.16, air volume fraction, (vair = 0),
and Fuller coefficient, nF = 0.5 , as well as
maximum size of aggregate, dmax = 2mm,
and minimum particle size used in simulation,
dmin = 1mm. This first set of parameters can
be obtained directly from the concrete mix de-
sign.

The second set of parameters are relevant to
the facet constitutive law at the meso-scale level
and can be calibrated from load-displacement
response of experiments such as compression
and fracture tests. In this study, three simula-
tions including uniaxial compression, notched
three-point bending and tensile splitting tests
are chosen to identify material parameters, and
numerically obtained results are directly com-
pared with experimental data from cast speci-
mens.

Obtained results are given as seen in Fig. 2.
Numerical results showed good alignment for
compressive and fracture test, while tensile
splitting test obviously requires further calibra-
tion. Parameters calibrated from these test are
given in Table 3.1.
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Figure 2: LDPM Parameter Calibration: (a) uniaxial unconfined compression, (b) notched three-point bending, (c) tensile
splitting

Table 1: LDPM Parameters

Parameter -
E0[MPa] 75,000
α [-] 0.25

σt[MPa] 15
lt [mm] 10.6

Shear Strength Ratio [-] 6.5
Softening Exponent [-] 0.28

Initial Friction [-] 0.0335

3.2 Meshing for LiDAR-Scanned Geome-
tries

To account for geometric effects, LiDAR
scanning was employed to capture the actual
shapes of printed specimens with high precision
(accuracy of 0.08 mm). Pre-processing of raw
data involved the following steps:

1. Point cloud data is merged into a single
layer and improving resolution (0.2–0.4
mm) and prepares for triangulation.

2. Unwanted artifacts are removed, and
the mesh is made watertight using the
screened Poisson surface reconstruction
algorithm [12].

3. Resolution is reduced using quadratic
edge collapse decimation [13].

4. The marching cubes algorithm [14] gen-
erates uniform meshes, ensuring smooth
particle placement and reducing vertex
clustering.

After improving and smoothing 3D scanned
geometry, mesoscale internal structure of spec-
imen is created using preprocessor callled NU-
FreeCAD. Through various Python scripts, the
particle placement, meshing, and tesselation
procedures outlined in Ref. [6] have been per-
formed. LDPM polyhedral cell structures, tetra-
hedral mesh, and corresponding facet data are
provided as output files that can be read and in-
terpreted by the solver. The NU-FreeCAD Pre-
processor is distributed freely1 under the BSD
3-Clause License. Figure 3 illustrates the mesh
generation process and the influences of geo-
metric features.

1github.com/Concrete-Chrono-Development/chrono-preprocessor
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Figure 3: Mesh pre-processing steps: (a) lidar scanning,
(b) extracting point cloud, (c) mesh simplification, and
(d) mesh regularization.

3.3 Numerical Model Creation
Creating a computational model that ac-

curately represents laboratory experiments for
3D-printed concrete involves addressing several
challenges and taking essential steps. One crit-
ical step is ensuring smooth and parallel sur-
faces, especially where the LDPM flat sections
of the mesh interact with rigid bodies. This is
typically achieved through mesh simplification
to minimize noise and scatter from lidar data,
see Fig. 4. Another important consideration
is determining appropriate interactions, such as
evaluating contact properties between loading
platens and LDPM mesh. This may involve op-
tions like general contact or surface-to-surface
contact modeling. Additionally, notches in
three-point bending specimens must be added
during post-processing of the mesh. This step
is necessary because lidar scanners often fail to
capture the full notch depth, leading to inac-
curacies. Finally, tensile splitting tests present
unique challenges, as uncapped surfaces with
irregular shapes can cause stress concentrations,
Fig. 4d. Addressing this may require modifying
the mesh or modeling materials that conform to
the concrete’s shape. These steps are crucial to
creating a reliable computational model for 3D-
printed concrete experiments.

Figure 4: Elements of model setup for simulations: (a)
smooth loading surfaces, (b) interaction properties, (c)
implementation of notch in mesh, and (d) irregular load-
ing surfaces.

4 RESULTS
A uniaxial compressive test simulation is

performed on a 3D-printed sample. The sam-
ple, consisting of three layers, has an average
length ranging from 29 to 32 mm. It is posi-
tioned between caps with dimensions of 40 mm
in length, 35 mm in width, and 10 mm in thick-
ness. The total height, measured from the top of
the upper cap to the bottom of the lower cap, is
50 mm. During the experiment, a displacement
rate of 0.003 mm/s is applied. Obtained result
for numerical analysis is given in Fig. 5.
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Figure 5: Stress-strain diagram for uniaxial compressive
test simulation

5 CONCLUSIONS
This study demonstrates the potential of

LDPM simulations combined with lidar-
scanned geometries to capture the mechanical
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behavior of 3D printed UHPC. By integrating
experimental data and numerical modeling, the
framework provides valuable insights into the
role of anisotropy and surface geometry on the
behavior of the 3D printed samples. This study
developes a modeling framework which will fa-
cilitate prediction of performance of 3D printed
samples and provide insight into design deci-
sions for structural applications of 3D printed
concrete. Future work includes extending the
model to fiber-reinforced specimens and scal-
ing up to structural applications.
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