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Abstract: Understanding the degree of reinforcing bar corrosion in reinforced concrete (RC) 

structures is crucial for evaluating the behavior. This study develops a simulation system for 

estimating the corrosion distribution along the rebar of a RC beam member based on surface crack 

widths. The system integrates the rigid body spring model (RBSM) with machine learning methods. 

The RC beam is modeled and RBSM simulations with different expansion distributions are run with 

500 analysis steps. The expansion data and the corresponding surface crack width data generated 

from the simulations are used to build the training dataset for machine learning. A large number of 

training data samples are obtained by extracting the simulation results step-by-step. The inputs are 

surface crack widths from several locations and the desired output is the internal corrosion-induced 

expansion. After training with the dataset, the neural network is able to correlate inputs and outputs, 

allowing it to estimate an expansion distribution from given cracking data. The estimated expansion 

distribution is then used to simulate the surface cracks using RBSM, and the error between the 

given cracking data and simulated cracks is returned as an input to the trained network in order to 

optimize the expansion estimation and enhance performance of the system. The feasibility of the 

proposed RBSM-neural network system is validated using both synthetic and experimental test 

data. The estimation results align well with the target data, demonstrating the effectiveness of the 

system in estimating internal expansion along the rebar and reproducing the cracking distribution 

using surface crack data. Internal distributions of cracking and stress states are extracted from the 

simulations, providing additional information for further analysis of structural performance. 
 

 

1 INTRODUCTION 

In RC structures exposed to chloride-rich 

environment, corrosion is a significant cause 

of structural deterioration [1]. Corrosion 

initiates at the steel-concrete interface, and 

expansion pressure is caused by the rust, 

leading to cracking at the surface eventually. 

The residual performance of corroded 

structure is strongly affected by the corrosion 

degree [2], and the knowledge of corrosion 

state is crucial for maintenance. Some non-
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destructive approaches have been used to 

examine the internal corrosion condition, such 

as the half-cell potential method [3] and the 

polarization resistance method [4]. However, 

these methods are not able to provide an 

accurate estimation of the corrosion 

distribution. Numerical simulations can be 

used to analyze the structural performance of 

corroded RC members by modelling the rebar 

corrosion and reproducing observed cracks. 

Finite element method (FEM) [5] and discrete 

analysis method such as RBSM [6] have been 

used for the purpose. Surface cracks can serve 

as indicator for assessing corrosion level, and 

previous researches [7,8] have developed a 

system by integrating model predictive control 

(MPC) with RBSM to estimate inner corrosion 

based on observed cracking. The results are 

close to the target with acceptable variation, 

while an alternative evaluation method with 

higher accuracy is desired. Machine learning 

has been widely used in inverse analysis to 

predict outputs based on input data. Such an 

approach is suitable for estimating internal 

corrosion distribution given the input surface 

crack width data. The multilayer perceptron 

(MLP) network is applicable for analyzing 

nonlinear relationship between inputs and 

outputs as a typical type of neural network [9]. 

This study aims to develop a machine 

learning-based method for internal corrosion 

estimation (output) given surface crack width 

data (input). The cracking distribution is then 

reproduced using the estimated corrosion 

distribution. The RBSM-neural network 

system is proposed by integrating MLP 

network with RBSM. The network is trained 

with the training dataset created by RBSM 

simulations, and then used for estimating 

internal corrosion from given surface cracking 

data. The estimated corrosion is used to run an 

RBSM simulation, and the simulated cracking 

is compared with the target cracking. An 

optimization process is conducted until the 

results reach satisfactory accuracy. The 

predicted results verify the capability of the 

RBSM-neural network for estimating internal 

corrosion distribution and reproducing 

matching surface cracking distribution. 

2 NUMERICAL MODEL 

2.1 Rigid body spring model (RBSM) 

The RBSM was proposed by Kawai et al. 

[10] and the 3D version was further developed 

by Nagai et al. [11,12]. This model treats the 

simulation object as rigid bodies, and the 

adjacent elements are connected with three 

springs (1 normal spring and 2 shear springs) 

as illustrated in Figure 1. Each element has 6 

degrees of freedom (DOF) and the spring 

response represents the interaction between the 

elements. The elements are randomly meshed 

using the Voronoi diagram as Figure 2 shows. 

The constitutive models in Figure 3 [13] are 

adopted to determine the normal and shear 

spring properties between the concrete 

elements. Cracking occurs when the normal 

spring stress exceeds the material tensile 

strength, as Figure 3a shows. Shear spring is 

assumed to be elasto-plastic as illustrated in 

Figure 3b, with the maximum shear stress 

calculated by Eq. 1 shown in Figure 3c. Figure 

3d shows the stress-strain relationship for the 

normal spring between the rebar elements 

represented by Eq. 2, while the shear spring is 

assumed to behave elastically. At the steel-

concrete interface, the normal and shear 

springs follow the same constitutive law as the 

springs between the concrete elements, while 

the tensile strength is reduced by half 

according to previous studies [14].  

 

Figure 1: Rigid bodies in RBSM 

 

Figure 2: Concrete and steel mesh 
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(a) Normal spring for concrete 

 
(b) Shear spring for concrete 

 

(c)  criteria for concrete 

 

(d) Normal spring for steel 

 

 

Figure 3: Constitutive models of springs [13] 

2.2 Corrosion expansive model (CEM) 

The corrosion product (rust) generates 

radial stress which leads to surface cracking. 

The effect of corrosion can be replicated by 

introducing incremental expansion at the steel-

concrete interface proposed by Coronelli et al. 

[15] and Lundgren et al. [16]. In corrosion 

expansive model (CEM), the expansive strain 

is added to the springs to simulate the rust 

accumulation as Figure 4 shows. The 

corrosion in real cases has a non-uniform 

circumferential distribution, while a simplified 

uniform distribution is assumed in this study. 

Jiradilok et al. [6,14] and Kumar et al [17] 

have confirmed the validity of the model by 

generating reasonable cracking behavior and 

proper structural performance evaluation. 

 

Figure 4: Interface expansive strain  

3 FRAMEWORK OF RBSM-NEURAL 

NETWORK SYSTEM 

Since the surface cracking is the available 

data in most cases, a method for estimating the 

inner corrosion from the observed crack data is 

desired. A machine learning method is suitable 

for building a relationship between the 

measured crack and corresponding expansive 

strain.  

Figure 5 illustrates the framework of the 

proposed RBSM-neural network system. In 

part I, the training dataset for the network is 

built. Reinforced concrete structure models are 
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created and different expansion distributions 

are added to the steel-concrete interface. The 

corrosion-induced surface crackings associated 

with the input expansion are recorded and used 

for constructing training dataset, as shown in 

Step 1. The MLP model builds connections 

between input crack width and output 

corrosion as Step 2 shows. 

In part II, the estimation is conducted with 

the trained network. The target surface crack 

distribution is first input to the network, 

yielding the expansion estimation (Step 3). An 

RBSM simulation is run using the expansion 

to evaluate the estimation, and the simulated 

cracking is compared with the target cracking 

(Step 4). The cracking difference is extracted 

 

 

 

Figure 5: Framework of RBSM-neural network 
system 
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and input to the network, resulting in 

expansion difference as output, which updates 

the expansion results as an optimization 

process. The process is repeated until the error 

is acceptable, and the updated expansion and 

simulated cracking are the final output (Step 5). 

4 NEURAL NETWORK TRAINING 

4.1 Training database 

A large amount of data samples is required 

for the network to be well-trained and make 

accurate predictions. The model used for 

building training dataset is a reinforced 

concrete beam with a single rebar or three 

rebars as shown in Figure 6. The rebars are 

categorized into three types, representing 

different location properties. Type I is the 

single rebar case, type II corresponds to that 

corrosion occurs in the two side rebars in 

multiple rebar cases, and type III represents 

that corrosion occurs in the rebar between 

other rebars. The material properties of steel 

      

(a) Overview and cross section of specimen for type I 

case 

 

              

(b) Overview and cross section of specimen for type II 

and type III cases 

Figure 6: Simulation model  

 

and concrete used for the model are shown in 

Table 1. The beam is longitudinally divided 

into several elements with a mesh size of 10 

mm, and the crack width data is obtained as 

the relative displacement between the elements 

at the surface with an interval of 10 mm. 

Gauge length between the elements is 40 mm. 

Figure 7 shows the crack measurement of type 

I case, with the data in the range of half its 

length at the middle part selected for training. 

In order to build the training dataset, 16 

simulation cases are run for type I, and 15 

simulation cases are run for type II and type III. 

Several randomly or regularly distributed 

expansions are added using CEM, and the 

simulations are run for 500 steps. The crack 

width data and input expansion are recorded at 

every step. An example of the simulation data 

at every 100 steps is shown in Figure 8. 

Table 1: Material properties of the model 

 

Elastic 

modulus 

(GPa) 

Yield 

strength 

(MPa) 

Tensile/Ultimate 

strength  

(MPa) 

Concrete 35 / 3.0 

Steel 200 450 700 

 

Figure 7: Cracking measurement of type I case 

 

   

Figure 8: Simulation case for training (type I) 
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4.2 Network structure 

The MLP network is trained with sufficient 

training dataset. As shown in Figure 9, for type 

I case, the inputs are the surface crack width 

data at the target location together with the 

data from four adjacent locations, and the 

output is the inner expansion at the target 

location. For type II and type III cases, the 

inputs are the crack width at five locations of 

the target rebar and the neighboring rebar. All 

data along the rebars are used for training. The 

influence of the neighboring locations is taken 

into consideration, and the number of training 

data samples for the three types of cases is 

368,000, 420,000 and 210,000, respectively. 

 

(a) Data structure of type I case 

 
(b) Data structure of type II and type III cases 

Figure 9: Data structure of MLP network 

5 VALIDATION OF RBSM-NEURAL 

NETWORK SYSTEM 

5.1 Results of type I case 

The feasibility of the proposed system to 

make estimations on type I case is verified 

through experimental data performed by 

Kuntal et al. [8]. Figure 10 illustrates the 

dimensions of the experiment specimen, and 

the accelerated corrosion test is conducted as 

Figure 11 shows. The degree of corrosion is 

defined based on the reduction of cross section 

area. The simulation model is built with the 

same dimensions as the experimental 

specimen, and the material properties for the 

model elements are presented in Table 2. 

 

Figure 10: Dimensions of experiment specimen [8] 

 

Figure 11: Accelerated corrosion test setup [8] 

Table 2: Material properties of simulation model 

 

Elastic 

modulus 

(GPa) 

Yield 

strength 

(MPa) 

Tensile/Ultimate 

strength 

(MPa) 

Concrete 33 / 3.0 

Steel 196 400 620 

The estimated expansion and reproduced 

cracking distribution with two optimization 

iterations are shown in Figure 12. To compare 

the estimated expansion from RBSM-neural 

network with the degree of corrosion in 

experiment, a coefficient  proposed by 

Kuntal et al. [8] is adopted. By multiplying 

with , the expansion value is converted to the 

degree of corrosion, while the value of  is 

determined by matching the peak value of 

estimated expansion and target degree of 

corrosion. From the results, it can be observed 

that the estimation improves with the iterative 

optimization. The estimated corrosion aligns 

well with the target experimental value. For 

the cracking reproduction, in spite of the small 

deviation at the right end, the simulated 

cracking distribution is in good agreement 

with the experimental results. 

Figure 13 compares the experimental 

cracking pattern with the simulation, and the 

results are similar. The internal stress and 

internal crack distribution can also be 

extracted as illustrated in Figure 14. The 3D-

RBSM simulation generates reasonable inner 

conditions at each step, which can be used for 

structural performance analysis and future 

state prediction. 
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(a) Corrosion estimation 

           
(b) Cracking reproduction 

 

Figure 12: Comparison between predicted and 

experimental results 

 

Figure 13: Experimental and simulated surface crack  

 

 

Figure 14: Internal cracking and stress distribution 

5.2 Results of type II and type III cases 

The feasibility of the proposed method on 

multiple rebar case is verified using synthetic 

test data with regularly distributed expansion. 

The data is generated from RBSM simulation 

with the same model configuration in Figure 

6b. The expansion estimation and cracking 

reproduction results of two test cases are 

shown in Figure 15. From the results, it can be 

seen that the overall trend of estimated 

expansion and cracking distribution is close to 

the target, and the optimization process is not 

conducted since the results are already 

acceptable. By inputting the crack width data 

from neighboring rebars, the network takes the 

influence of the data from surrounding 

locations into consideration when making 

predictions.  

The results indicate that the RBSM-neural 

network system provides good estimations on 

internal expansive strain and cracking 

distribution of RC structures with multiple 

rebars, demonstrating the potential of the 

proposed method to make predictions using 

two-dimensional input and output data. The 

system can be applied to more complicated 

cases, such as simulations with randomly 

distributed expansion and experimental cases, 

to investigate its effectiveness. 

6 CONCLUSION 

In this study, a new approach for estimating 

the internal corrosion distribution of RC 

members given the observed surface crack 

data is proposed. This method is an integration 

of RBSM and machine learning, and the 

performance of the developed system is 

evaluated with experimental and synthetic data. 

The following conclusions can be drawn from 

this work: 

1. The RBSM-neural network system can 

effectively estimate internal corrosion and 

simulate surface cracking distribution of 

RC beam using experimental data for 

single rebar case (type I). The simulation 

can generate accurate results after the 

optimization iteration. 

2. For single rebar case (type I), the surface 

cracking pattern obtained from simulation 

is similar to the experimental results. The 

internal stress and cracking distribution can 

be extracted with the simulation, which can 

be applied to analyze structural 

performance. 
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(a) Test case 1 

 

 

 

 

 

 

 

(b) Test case 2 

 

Figure 15: Estimated expansion and cracking 

distributions 
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3. For multiple rebar (type II and type III) 

cases, the estimated expansion and 

cracking distribution match the target in 

general. The applicability of the system on 

RC structures with multiple rebars can be 

further studied using experimental data. 

4. The RBSM neural network can take the 

influence of crack width data from 

neighboring locations of single rebar case 

into account when making estimations. For 

multiple rebar cases, the cracking data 

from neighboring rebars are also 

considered, which increases the accuracy 

of the prediction. 
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