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Abstract. Cracking in quasi-brittle materials, like concrete, is known to be a nonlocal process associ-
ated with an intrinsic material length scale. To take into account these nonlocal effects in continuum
damage models for concrete, many approaches have been proposed in the past decades. The lat-
ter comprise integral nonlocal formulations, implicit or explicit gradient-enhanced models, as well
as the phase field approach to cohesive fracture. Among them, implicit gradient-enhanced models
have proved to represent a powerful approach, when applied in Finite Element simulations. However,
it is well-known that conventional gradient-enhanced models yield a nonphysical broadening of the
damaged zone. To overcome this issue, the so-called localizing gradient damage model with decreas-
ing interaction has been proposed by Poh and Sun. However, to the authors’ best knowledge, this
formulation has only rarely been applied to damage-plasticity models, and a comprehensive discus-
sion of its impact on the structural behavior is missing in the literature. In this study, we investigate
the localizing gradient formulation proposed by Poh and Sun for the widely recognized concrete
damage-plasticity (CDP) model by Grassl and Jirdsek. Specifically, we discuss the advantages and
disadvantages compared to the conventional gradient enhancement through a simple 1D tensile test
and a numerical benchmark example.

1 Introduction discretization-sensitive results originate from
not taking material-specific length parameters

The appropriate and accurate modeling of into account, when using unregularized classi-

concrete failure has been the topic for many
research groups in the past decades. Devel-
oped models can be divided into discrete ap-
proaches, in which the separation of mate-
rial is taken into account, and continuum ap-
proaches, where cracks are described in an
approximative smeared manner. For the lat-
ter, in the course of modeling material soften-
ing, regularization techniques are key ingredi-
ents for meaningful, i.e., discretization insen-
sitive, results in numerical simulations. From
a material characterization point of view these

cal continuum models.

So-called generalized continuum models,
which naturally take internal length parame-
ters into account, provide a remedy for this
issue. The class of generalized continuum
models comprises, e.g., (i) explicit or im-
plicit gradient-enhanced models [8]], (ii) in-
tegral nonlocal formulations [1, 4], (iii)) mi-
cropolar or Cosserat type models [6], and
(iv) the phase-field approach to fracture [5]
Among them, models based on the continuum
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enhanced with gradients of internal variables
have gained widespread acceptance for model-
ing quasi-brittle failure of concrete, cf. e.g.,
[7, 113, 16, 2]. In the most simple version, the
length of nonlocal interaction is assumed to be
constant, termed as the conventional approach
in the following. This results in a nonphysical
broadening of the damaged zone which is not
in accordance with experimental observations.
To overcome this issue, the so-called gradient
damage model with decreasing interactions has
been proposed by Poh and Sun [9]. This ap-
proach is termed as the localizing approach in
the following. Thereby, the nonlocal interac-
tion decreases with growing damage, prevent-
ing the spurious growth of the damaged zone.
Since the introduction of the localizing gradient
damage model, this technique has been mostly
applied to damage models for concrete. To the
author’s best knowledge, only Zhao et al. [12]
applied the localizing gradient enhancement to
a damage-plasticity model for concrete. The
authors confirmed to overcome the issues of
the spurious growth of the damaged zone, and
to obtain mesh-insensitive results in numerical
simulations. However, a rigorous and critical
discussion on the applicability and limitations
of the approach is missing in the respective pub-
lication. This is the motivation of the present
contribution. We investigate the straightfor-
ward extension of a well-established damage-
plasticity model for concrete, firstly using a
simple 1D tensile test, and subsequently using
a well-known benchmark example for concrete
failure.

The remainder of this contribution is orga-
nized as follows: In Section [2, we briefly sum-
marize the general structure of the gradient-
enhanced damage-plasticity models.  Sub-
sequently, we discuss the differences be-
tween conventional and localizing gradient-
enhancements by means of a simple 1D tensile
test in Section 3l In Section ] we briefly in-
troduce the concrete damage-plasticity model
by Grassl and Jirdsek [3|], and compare both,
conventional and localizing gradient enhance-
ments, using a well-known benchmark example

for concrete failure. Based on the presented re-
sults, SectionE]provides a summary, discussion,
and an outlook on important future research di-
rections.

2 Gradient-enhanced
models for concrete

damage-plasticity

In the gradient-enhanced continuum theory
[8]], the quasi-static equilibrium equation

Vo +f=0, (1)

in which o is the Cauchy stress tensor and f de-
notes the body forces, forms a coupled system
of partial differential equations, together with
the second-order partial differential equation

B_CAB:ada (2)

which describes the integrity of the material. In
Eq. , /3 denotes the nonlocal damage driving
variable, and ay is its local counterpart. The
parameter c controls the length of nonlocal in-
teraction which may change during the loading
process. Poh and Sun [9] employ a slightly dif-
ferent second-order partial differential equation
for the nonlocal variable:

B =V(cVB) = aq. 3)

Note that the latter equation is equivalent to
Eq. only for constant c. In this contribu-
tion, we adopt Eq. for describing the non-
local variable.

For a coupled damage-plasticity approach
with isotropic damage, the stress-strain relation
is expressed in rate form as

6=(1-w)C:(6—£&P)—wC:(e—€P), 4

in which C denotes the fourth-order elastic stiff-
ness tensor, and € and P are the total strain ten-
sor and the plastic strain tensor, respectively.
Furthermore, w denotes the isotropic damage
variable which is computed from the nonlocal
damage driving variable 3.

The elastic domain is delimited by the yield
function f,,(&, ¢n), formulated in terms of the
effective stress tensor & = o /(1 — w), and an
internal hardening variable qy,.



A. DUMMER, M. NEUNER and G. HOFSTETTER

The evolution of the plastic strain €? may
then be described utilizing a non-associated
flow rule as

dgp(0)

.p:'
E=rA—0" (&)

with the plastic multiplier )\ and the plastic po-
tential function gp.

3 Simple 1D tensile test

To start a detailed analysis of conventional
and localizing gradient-enhanced damage-
plasticity models, we consider a simple 1D
tensile test, cf. Fig. [Il The specimen is as-
sumed to be of length 2. with the constant
cross-sectional area A. For triggering the dam-
age process, a slightly weakened zone of length
2k L is assumed in the center of the specimen.

weakened zone

Oy Og
==
S L] |=
_ (-mL 25L  (Q-k)L _
2L

Figure 1: Simple 1D tensile test with a weakened zone in
the center.

The material behavior is assumed as linear
elastic, perfectly plastic, and softening in the
post-peak regime. The following constitutive
equations represent the 1D tensile behavior pre-
dicted by the concrete damage-plasticity model
by Grassl and Jirdsek [3]] which will be used in
the Finite Element simulations later on. The
equations for 1D tensile loading are given as
follows. The stress-strain relation reads

0, =(1—w)E (e, —€P), (6)

where o, is the axial stress, £ is the Young’s
modulus, and ¢, and € denote the total and
plastic axial strain, respectively. The elastic do-
main is delimited by the yield function

fp(a'x) == |5-x’ - ftu (7)

in which &, is the effective axial stress, and f,
is the uniaxial tensile strength. The evolution of
the plastic strain is described by the associated
flow rule

. - Of, o
P = \—~-P a
b ~

=\

®)

o]

with the plastic multiplier . For describing the
evolution of damage the exponential softening
law

w=1—exp(—//e) ©9)

is employed. Therein, € controls the steepness
of the softening curve. The nonlocal damage
driving variable is computed from the 1D ver-
sion of equation (3)

B—(ch) = aq (10)

where (®)" denotes the first-order spatial deriva-
tive with respect to the coordinate z. The evolu-
tion of the local damage driving force is defined
as

qg = [€2] = A (11)

Conventional approach. In the case of a con-
ventional gradient-enhanced formulation, i.e.,
¢ = ¢y (constant), Eq. can be solved analyt-
ically for the simple tensile test shown in Fig. [T}
In the following, the symmetry of the problem
is exploited, and only the solution for the left
half of the specimen, i.e., 0 < x < L, is con-
sidered. This is achieved by assuming an incre-
mental increase of the plastic strain in the weak-
ened zone, resulting in the same incremental in-
crease of the local damage driving force. Plas-
tic deformations are only present in the weak-
ened zone, and thus, the solution is split into
two regions. The solution for the nonlocal dam-
age driving field of the unweakened zone, i.e.,
x < kL, is given by the homogeneous solution
of Eq.

Bu(x) = Ay exp (z/y/e) + By exp (—z/y/a),

(12)
where A; and B; are integration constants. The
solution for the nonlocal damage driving field
of the weakened zone, ie., L < z < L,
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is given by the solution of the inhomogeneous

Eq.

Ba(x) = Ay exp(a/y/eg)+ By exp(—a/ /) +C,
(13)

where A, and B, are integration constants, and

the constant C refers to the particular solution.

The constants A;, B;, A, and B, are de-
termined by the Neumann boundary condition,
ie., #(0) = 0, the symmetry condition, i.e.,
B'(L) = 0, as well as the continuity require-
ments, i.e., 31(kL) = B2(kL) and B (kL) =
Py (kL).

With the known nonlocal damage driving
field, the damage variable w can be computed
from the softening law (9). The equilibrium
equation (I]) requires constant stress along the
specimen, which is the elastic solution in the
pre-peak regime. The stress in the post-peak
regime is determined at the cross-section with
the maximum damage, i.e., at + = L due to
symmetry. Thus, the stress along the specimen
is constant and is computed as

Oyp = (1 - <"&nax)ftu, (14)

Next, the strain distribution along the speci-
men can be computed as

Oy

T 1 -wE

+eP (15)

with the known plastic strain distribution which
is constant in the weakened zone, and zero else-
where.

Localizing approach. Following the localiz-
ing gradient-enhanced approach by Poh and
Sun [9], the nonlocal interaction parameter is
assumed to decrease with growing damage.
This results in a nonlocal interaction parame-
ter as a function of the damage variable, i.e.,
c(w) = g(w) ¢y, with the scaling function

(1 - R)exp(—nw)+ R —exp(—n)
1 —exp (—n)

g(w) =
(16)

in which R is a parameter controlling the min-
imum interaction, and 7 is a parameter control-
ling the steepness of the decrease. In this con-
tribution, we use the default values R = 0.005
and 1 = 5 as proposed in [9].

Because the nonlocal interaction parame-
ter is now a function of the damage vari-
able, and thus a function of the nonlocal dam-
age driving field, the governing equation for
the nonlocal field (I0) becomes a nonlinear
ordinary differential equation. Consequently,
an analytical solution is hard, if not impossi-
ble, to find. Thus, for computing the non-
local damage driving field, the Finite Differ-
ence Method (FDM), together with an iterative
Newton-Raphson scheme is employed. Once
the nonlocal damage driving field is known, the
procedure for computing the damage variable
w, stress, and strain distribution is the same as
for the conventional gradient-enhanced model.

Parameters and results. The parameters for
the 1D tensile test are given in Table The
strength and stiffness parameters are chosen in
line with the experiments on L-shaped speci-
mens by Winkler et al. [11]], as the respective
experiments are simulated in the next section.
The softening modulus ¢; is calibrated for the
fixed interaction parameter c;, such that the ex-
perimentally determined mode I fracture energy
of GV = 74J/m? is obtained in the tensile
test. This results in different values of ¢; for the
conventional and localizing gradient-enhanced
model.

Table 1: Parameters for the 1D tensile test.

Parameter Value
Young’s modulus 25.8GPa
Uniaxial tensile strength f;, 2.7MPa
Softening modulus €f
conventional 4.64x 1074
localizing 1.35x 1073

Nonlocal length parameter \/cy 25 mm

Specimen length 2L 0.2m
Weakened zone parameter s 0.05
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Fig.|2|shows the distribution of oy, B , w, and
the total strain ¢, along the specimen length for
the 1D tensile test at different values of the plas-
tic strain in the weakened zone. It can be seen,
that the damage variable w is distributed along
the whole specimen length, and the damaged
zone is broadened due to the constant nonlocal
interaction parameter. The widespread damage
is also reflected in the strain distribution.
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Figure 2: Distribution of different variables along the
specimen length for the conventional gradient-enhanced
model: local driving variable oy (top), nonlocal variable
B_, damage variable w, and total strain (bottom) for in-
creasing plastic strain values in the weakened zone.

Fig. [3] shows the distribution of the same
variables along the specimen for the localizing
gradient-enhanced model. It can be seen that
the damaged zone does not broaden during the
loading process, which is attributed to the de-
creasing nonlocal interaction parameter. Fur-
thermore, the strain distribution is more local-
ized in the middle of the specimen.
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Figure 3: Distribution of different variables along the
specimen length for the localizing gradient-enhanced
model: local damage driving variable oy (top), nonlocal
variable B damage variable w, and total strain (bottom)
for increasing plastic strain values in the weakened zone.
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The load-displacement curves for both, the
conventional and localizing gradient-enhanced
model are shown in Fig. 4] Significant differ-
ences are observed in the post-peak regime. For
the conventional approach, the exponential soft-
ening law can directly be identified, whereas a
S-shaped deviation from the exponential soften-
ing law is obtained for the localizing gradient-
enhanced model.

localizing (& = 1.35x 1077)

——= conventional (81‘ =4.64 x 10*4)

stress o, in MPa

—
(=)
1

-

0.5 [N

0.0 T T —T=
0.000 0.025 0.050 0.075 0.100 0.125 0.150
specimen elongation in mm

Figure 4: Load-displacement curve for the 1D tensile test:
conventional vs. localizing gradient-enhanced model.

In summary, both approaches have advan-
tages and disadvantages. In particular, for the
conventional approach, the undesired broaden-
ing of the damaged zone is observed, How-
ever, the load-displacement curve, shows the
expected exponential slope of the softening
law. By contrast, the damage pattern and strain
distribution resulting from the localizing ap-
proach are more realistic, i.e., the damaged zone
does not broaden during the loading process.
However, the load-displacement curve has a S-
shaped form, which is not expected for direct
tensile tests of concrete specimens.

So far, only the behavior under 1D tension
has been studied, which does not allow any con-
clusions to be drawn on the structural behavior
in 3D Finite Element simulations.

4 Finite Element simulations

In the upcoming section, we briefly review
the concrete damage-plasticity model proposed
by Grassl and Jirasek [3]]. Both, conventional
and localizing gradient enhancements, are com-
pared and discussed in the context of numeri-
cal simulations of the well-known tests on L-
shaped specimens carried out by Winkler et al.
[L1].

Test setup. The test setup used by Winkler
et al. [11] is illustrated in Fig. [S| The speci-
men was loaded in the vertical direction by a
prescribed displacement. Simultaneously, the
load-displacement curve was recorded. In the
numerical simulations, the shaded regions are
modeled as linear elastic, because of the rein-
forcement. The remaining part of the specimen
is modeled using the concrete damage-plasticity
model.

elastic regions E
(=3
\ &
=
=
applied displacement — | =3
=
=
(=3
le)
E [\l
=
(=3
=

250 mm 250 mm

Figure 5: Test setup for the L-shaped specimen test by
Winkler et al. [11]].
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Constitutive model. To describe the nonlin-
ear material behavior of concrete, the concrete
damage-plasticity model by Grassl and Jirdsek
[3] is employed. Thereby, the elastic domain is
delimited by the yield function

fo(a s (o)) =

<<1 ~anten)) (2 + ‘JZ—‘“) + 2%)

+mog¥(ay) (#r(@ " ;—m) ~ oy,
17)

formulated in terms of three invariants of the
effective stress tensor, i.e., the effective mean
stress o, the effective deviatoric radius p and
the LODE angle 6, as In Eq. (17), 7(9) is a
function proposed by Willam and Warnke [|10]
defining the shape of the yield function in the
deviatoric sections, ¢, denotes the normalized
stress-like internal hardening variable, and my
is the friction parameter, defined in terms of the
material strength parameters, i.e., the uniaxial
compressive strength f.,(t), the uniaxial tensile
strength f,(¢f) and the equi-biaxial compres-
sive strength f.,(¢). The evolution of the plas-
tic strain €® is described using a non-associated
flow rule, cf. Eq. (5), using the plastic potential
function

gp(6m7 P qh<ap)) =

((1 ~ anla)) (ﬁ + ;—m) + §f£>

+qﬁ<ap>(%’f +m‘°’]f"“’>). (18)

where m, and mg () are parameters control-
ling the plastic dilation.

The evolution of the isotropic damage vari-
able w is governed by the exponential softening
law Eq. (9). For computing the local damage
driving force oy in Eq. (2), the equivalent plas-
tic strain rate is defined according to [3]] as

if ap < 1,

0
. (p)
oy = 19
¢ {é%/xs(ép) otherwise, (19

in which £}, denotes the volumetric part of the
plastic strain rate, and z(¢P) is a function con-
trolling the post-peak ductility. The parameter
ap 1s an internal strain hardening variable, for
which o, = 1 represents the fully hardened
state, i.e., indicating that the material strength
is reached. For uniaxial tension z;, = 1, thus
the simple 1D model used in the previous sec-
tion is the specialization of the present model
for 1D tension.

Numerical model. The L-shaped domain is
discretized with 20 node hexahedral elements
with quadratic shape functions using three dif-
ferent mesh sizes. The mesh sizes coarse
(25 mm), medium (8.3 mm), and fine (2.8 mm)
refer to approximate element sizes in the area
of the expected crack. The material parameters
are chosen according to the standard tests con-
ducted in the course of the experiments by Win-
kler et al. [11]. The same key parameters are
chosen as for the 1D tensile test, which are sum-
marized in Table[Il Since no calibration of the
material parameters is performed in this contri-
bution, the following results can be interpreted
as a blind prediction.

Numerical results. Fig. [6] shows a typical
damage contour on the fine mesh in the post
peak regime for both, the conventional and lo-
calizing approaches. The damaged zone is non-
physically wide for the conventional approach,
while the localizing approach yields a more
localized damage zone. So far, the localiz-
ing approach seems to outperform the conven-
tional approach. However, the nonlocal inter-
action parameter is chosen relatively large, and
a more localized damage pattern could be ob-
served with a smaller parameter using the con-
ventional approach, see e.g., Neuner et al. [6].
Nevertheless, also a smaller nonlocal interac-
tion parameter leads to a broadening of the dam-
aged zone during the loading process.
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conventional

localizing

[ .

0.00 0.20 0.40 0.60 0.80 0.99
damage variable @

Figure 6: Typical contour plot of the damage variable w
using the fine mesh for the conventional approach (top)
and the localizing approach (bottom).

Fig. [7| shows the load-displacement curves
for the L-shaped specimen obtained in the FE
simulations with three different mesh sizes, to-
gether with the experimental data observed by
by Winkler et al. [11]. It can be seen that the
conventional gradient-enhanced model yields a
good prediction of the ultimate load, and the re-
sults for the medium and fine mesh are almost
identical. By contrast, the localizing gradient-
enhanced model overestimates the ultimate load
significantly. Additionally, the simulations for
the fine and medium mesh terminated early,
which may be due to instabilities and oscil-
lations arising in the nonlocal damage driv-
ing field. Moreover, the results between the
medium and fine mesh differ considerably. This

confirms that the localizing gradient-enhanced
model needs a by far more refined mesh to ob-
tain meaningful results. This is of course not
surprising, as the nonlocal interaction parame-
ter decreases with growing damage, and thus
the nonlocal interactions are more localized,
and can thus only be resolved with a very fine
mesh.

10
. X experiment
3l 1
o 3 === conv./medium
—— conv./fine
------ conv./coarse
6 2% === loc./medium

"._ — loc./fine
“-_ R loc./coarse

applied force in kN

0 I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

displacement in mm

Figure 7: Load-displacement curves for the L-shaped
specimen test by Winkler et al. [11].

5 Conclusions and outlook

In this contribution, we compared conven-
tional and localizing gradient-enhancements for
a specific, well-established concrete damage-
plasticity model. The comparison includes a
simple 1D tensile test and numerical simula-
tions of the L-shaped specimen test by Winkler
et al. [11]. The following conclusions can be
drawn:

* As already known from previous stud-
ies, the conventional gradient-enhanced
model yields a broadened damage zone in
both simple 1D tensile tests and structural
simulations. However, the prediction of
the structural behavior, i.e., the maximum
load carrying capacity, in the L-shaped
specimen test is appropriate.

* The naive straight-forward extension
of the conventional gradient-enhanced
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model to the localizing approach yields a
more realistic damage pattern in the 1D
tensile test. However, the predictions in
the structural simulations of the L-shaped
specimen test are not satisfactory. In par-
ticular, the ultimate load is overestimated
significantly.

Future research efforts should focus on a
more comprehensive investigation of the local-
izing gradient-enhanced model. In particular,
the impact of this straightforward extension has
to be studied in a comprehensive set of numeri-
cal experiments, including a wide range of fail-
ure modes. Moreover, the formulation of the
exponential softening law w(f3) should be re-
visited. A reformulation may improve the pre-
dictions of the localizing approach in structural
simulations. Furthermore, the influence of the
formulation of the scaling function g(w) on the
results should be studied in more detail. A more
refined relation may be needed to obtain better
results in structural simulations.
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