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Abstract. Lattice modeling of concrete is a discrete mesoscale representation of the material, where
constitutive relations are prescribed at a smaller scale compared to traditional continuum-based mod-
els. These approaches can capture complex nonlinear behavior at the macroscale while maintaining
a simpler and less phenomenological constitutive model at the mesoscale. Although these models
come with a high computational cost, they are capable of accurately predicting global mechanical
behavior and, in several cases, outperform continuum-based models. For this reason, they are consid-
ered valuable for generating high-fidelity databases that can be used in data-driven or coarse-graining
approaches. In this study, discrete stress-strain findings from the Lattice Discrete Particle Model
(LDPM) are upscaled using a coarse-graining technique based on the averaging of conservation equa-
tions. The results are used to calibrate a non-local damage model, where the non-local model’s length
is prescribed by the width of the area in which energy is dissipated in the LDPM calculations. Multiple
coarse-graining lengths, ranging from one to five times the maximum aggregate size, are considered.
We conclude that the non-local length should better be directly related to the width of the area where
the energy is dissipated in the LDPM calculation. We also observe that the calibrated constitutive
model provides consistent responses on other structural geometries, including size effect studies.

1 INTRODUCTION

Discrete and lattice models are widely used
in the field of fracture mechanics (see the re-
view in Ref. [4]). The Lattice Discrete Particle
Model (LDPM) used in this study, is a good ex-
ample of such models, where aggregates bigger
than a certain size threshold are explicitly rep-
resented.

These models can accurately describe the
mechanical response of geomaterials [1], but
they come with a high computational cost. Al-
ternative solutions should be considered, such

as combining LDPM with classical finite ele-
ments [18]. Another approach is to homoge-
nize the discrete results to obtain macro-scale
continuum descriptions. These upscaled results
can then be used in data-driven approaches or
for calibrating an existing continuum model.
One upscaling technique, suitable in the general
case of nonlinear homogenization, is coarse-
graining, where a continuous description is gen-
erated by applying conservation laws. In this
study, LDPM results are homogenized using
coarse graining with multiple coarse-graining
lengths. The coarse-grained LDPM outputs are
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then used for calibrating a non-local damage
model. The calibrated model is validated us-
ing size effect calculations and by comparing
the global responses of different geometries.

2 THE LATTICE DISCRETE PARTICLE
MODEL (LDPM)

Originally developed by Cusatis and col-
leagues [5], the Lattice Discrete Particle Model
(LDPM) is a mesoscale model designed to sim-
ulate particle interactions in granular materi-
als, including mortar [15, 9], fiber-reinforced
concrete, engineered cementitious composites
[21, 20, 7, 22] and the cyclic behavior of con-
crete [24]. In this model, spherical particles
representing the grain size distribution of the
materials are arranged in the sample from the
largest to the smallest size. A Delaunay tetra-
hedralization of the particle centers, along with
nodes forming the external mesh, defines the
lattice system. The domain is then tessellated,
creating a network of polyhedral cells surround-
ing each spherical particle. The intersections of
these cells are represented by triangular facets,
where stresses and strains are expressed in vec-
tor form. Figure 1 provides an example of two
adjacent polyhedral cells.

Figure 1: Polyhedral Cells Surrounding the
LDPM Grains.

By incorporating a basic constitutive model
at the mesoscale level, this model is highly
accurate in predicting the behavior of granu-
lar materials, often outperforming traditional
continuum-based models [1, 18]. For this rea-
son, it is considered in this study as a high-
fidelity model capable of generating a compre-
hensive database for data-driven approaches.

3 COARSE-GRAINING (CG)
The coarse-graining technique used in this

contribution generates a continuous description
of field quantities over the considered solid
(stresses, strains, displacements) by manipu-
lating conservation laws. Specifically, macro-
scale homogeneous constitutive relationships
are derived from mesoscale heterogeneous
LDPM findings.

The homogenized mass density is calculated
by applying the convolution of the mass bal-
ance equation at the heterogeneous levels. The
mass balance equations at both the heteroge-
neous and homogeneous levels, along with the
mass density equation, are presented in equa-
tions (1), (2), and (3). In these equations, ∇.(x)
represents the divergence of x, (x)ϕ denotes the
convolution of x, R is the mass density at the
homogeneous level, ρ is the mass density at the
heterogeneous level, and ϕ is the convolution
function.

∂ρ

∂t
+∇.(ρv) = 0 (1)

∂R

∂t
+∇.(RV ) = 0 (2)

∂R

∂t
=
∂ρ

∂t ϕ
= −∇.(ρv)ϕ (3)

For the convolution functions, the normal-
ized Gaussian function shown in equation (4)
is considered in this work, where LCG is the
coarse-graining length.

ϕ(x, s) =
1

LCG

3

√
2π

exp

{
(
−(x− s)2

2(LCG

3
)2

)

}
(4)

The homogenized velocity is determined
from the mass balance equations at both lev-
els. The upscaled velocity, as determined in
equation (5), is computed as a function of the
mesoscale velocity field v, the local mass den-
sity ρ, and the domain’s coarse-grained mass
density R. Homogenized displacements are
then computed by integrating the velocity over
time, as shown in equation (6), where U is the
coarse-grained displacement.

V =
(ρv)ϕ
R

(5)
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U =

∫
t

V dt =

∫
t

(ρv)ϕ
R

dt (6)

Coarse-graining the balance of momentum at
heterogeneous, meso-scale, level as represented
in equation (7), and comparing it to the balance
of momentum equation at the homogeneous
level, as represented in equation (8), leads to
equation (9), where σ represents the mesoscale
stress field and S represents the macroscale or
coarse-grained stress.

∂ρv

∂t
+∇.(ρv ⊗ v) = ∇.(σ) (7)

∂RV

∂t
+∇.(RV ⊗ V ) = ∇.(S) (8)

∂RV

∂t
=
∂(ρv)ϕ
∂t

= (∇.(σ)−∇.(ρv ⊗ v))ϕ (9)

Equations (10) and (11) can be directly de-
termned from previous equation by introducing
a fluctuating velocity v′ = v − V .

∂RV

∂t
+∇.(RV ⊗ V ) =

(∇.(σ)−∇.(ρv′ ⊗ v′))ϕ (10)

S = (σ − (ρv′ ⊗ v′))ϕ (11)

The coarse-grained displacements and
stresses at homogeneous levels are determined
as a function of local entities in equations (6)
and (11). As we are only dealing with quasi-
static computations, the effect of fluctuating ve-
locity is neglected, and the stress at the homog-
enized level is determined from local stresses
as S = (σ)ϕ. Note that the angular momentum
balance is not considered for upscaling in this
study.

4 COARSE-GRAINING THE DISCRETE
CALCULATIONS

Coarse-graining discrete results is not
straightforward. LDPM results are defined by
stress vectors at each facet and displacements
at the center of each grain. Prior to proceed-
ing with homogenization, a stress tensor at the

center of each grain must to be estimated from
the discrete results. Several approaches can be
found in the literature to estimate an average
stress tensor. Among the most well-known is
the Love-Weber formula, which involves com-
puting the tensor product between the contact
force between particles and the vector joining
the centers of the grains ([14, 23]). In this study,
equation (12) is used for this purpose, where σ
and ε are the stress and strain tensors, and n
and tk are the normal and stress vectors at each
facet. Three uniaxial unit strain tensors and
three unit shear strain tensors are imposed, and
equation (12) is solved to estimate the stress
tensor.

Find σ such that ∀ε∑
k

[(σ.n− tk).(ε
∗.n)] = 0 (12)

Five concrete notched beams, each measur-
ing 700 mm in length, 200 mm in depth, and
with a span-to-depth ratio of 2.5, are consid-
ered in this part. The notch thickness is 2 mm,
and its length is 20% of the overall depth. The
five distinct samples share the same parameters,
differing only in their discrete particle distri-
bution. A three-point bending LDPM calcula-
tion is then conducted for the five samples, and
a grid of hexahedral elements, shown in Fig-
ure 2, with sizes ranging from 1/2.5Dmax to
less than 1/10Dmax, is considered for coarse-
graining. In previous works (see e.g. [18]) the
coarse-graining length LCG was previously cal-
ibrated to represent a homogeneous behavior in
the case of elasticity. In the present study, we
shall consider multiple coarse-graining lengths,
ranging from one to five times the maximum ag-
gregate size.

Figure 2: Coarse-graining points.
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5 CALIBRATION OF A DAMAGE
MODEL

In this section, the coarse-grained stresses
and strains are used for the calibration of a con-
tinuous model. The model and equations below
are defined by Mazars in Ref. [13], with a single
modification: a non-local strain is used in this
work. Concrete is assumed to be an isotropic,
damageable material with a scalar damage pa-
rameter D. The constitutive relation is defined
in equation (13) where σ is the second order
stress tensor, ε is the second order strain ten-
sor, C is the fourth order elastic stiffness tensor,
and D is the damage scalar.

σ = (1−D) · C : ε (13)

We also assume that the history parameter,
described in equation (14) and denoted by K, is
driven by the non-local field of strains denoted
by ε, whereKtr0 is the threshold of the damage.

K(x, t) = max[0,t] (ε(x, t) , Ktr0) (14)

The non-local strain is described in equation
(15):

ε =

∫
ψε̃dv∫
ψdv

(15)

where ψ is a Gaussian function with an in-
ternal length LC and ε̃ is the equivalent strain
defined in equation (16) with εi being the prin-
cipal strains and ⟨x⟩+ the Macauley bracket.

ε̃ =

√√√√ 3∑
i=1

(⟨εi⟩+)2 (16)

Damage will not increase if f(ε̃) < 0 or
f(ε̃) = 0 and dε ≤ 0. However, excessive
tensile strain, such as f(ε̃) = 0 and dε > 0,
can cause damage. The evolution of damage
in this model is described using equations (17)
where Dt,c determine the tensile and compres-
sive damage parameters and αt and αc directly
linked to the stresses.

g(K) = αt ·Dt + αc ·Dc (17)

Damage parameters are defined in equation
(18):

Dt,c = 1− Ktr0(1− At,c)

K
− At,c

expBt,c(K−Ktr0)
(18)

where At,c, Bt,c, and β are tensile, compres-
sive and shear parameters respectively, which
can be calibrated using uniaxial tensile or com-
pressive testing. The parameters αt and αc are
shown in equation (19), where εt,c and σt,c rep-
resent the tensile and compressive strains and
stresses.

αt =
3∑

i=1

(
⟨εti⟩ · ⟨εi⟩

ε̃2
)β

αc =
3∑

i=1

(
⟨εci⟩ · ⟨εi⟩

ε̃2
)β (19)

εt = (1−D) · C−1 : σt

εc = (1−D) · C−1 : σc (20)

As shown in the previous equations, to com-
pute D and K from coarse-grained results, an
internal length LC must be considered. This
length is associated with the fracture process
zone (FPZ) [3]. Because the non-local model
should describe as accurately as possible the
FPZ as obtained by LDPM, we will use the cor-
responding value for the internal length in the
remaining part of this study. Note that this is
at variance from the results by Pijaudier-Cabot
et al. [19] where the internal length resulted
from the calibration of the non-local damage
model. The relationship between the internal
length and the width of the FPZ is not explicit
and the internal length must be determined by
trial and error. Figure 4 shows the total energy
dissipated at each grain from an LDPM calcu-
lation at one of the final time steps shown in
Figure 3. At the same time step, Figure 5 shows
the total energy dissipated in the LDPM calcu-
lation as well as the energy dissipated per unit
volume in a non-local calculation with a length
LC = 2Dmax above the notch. It is this value
of the internal length that will be used in the re-
maing part of this study.
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Figure 3: Time step 92 in the LDPM calcula-
tion.

Figure 4: The dissipated energy at each grain at
time step 92 in J.mm.

Figure 5: The dissipated energy from LDPM
and non-local calculation with LC = 2Dmax.

After fixing the non-local length, we con-
sidered a varying coarse-graining length rang-
ing from one to five times the maximum aggre-
gate size. For each value of the coarse grain-
ing length, the non-local damage model has

been calibrated (parameters At, Bt, and Ktr0

in (18)) using the reconstructed relationship be-
tween D and K for each coarse grained stress-
strain point, same as in Ref. [19] using the
Levenberg-Marquardt procedure. The Sum of
Squared Residuals (SSR) has been also com-
puted to measure the difference between the
D and K values obtained from the fitted non-
local model and the coarse-grained data. Table
1 shows the evolution of the SSR with the vari-
ation of the coarse-graining length LCG. The
coarse graining length that minimizes the SSR
defines he best posssible fit of the non-local
model.

Table 1: SSR variation with the variation of
LCG

LC LCG SSR

2Dmax 1Dmax 1.468e-01
2Dmax 2Dmax 3.889e-02
2Dmax 3Dmax 3.577e-02
2Dmax 4Dmax 2.381e-02
2Dmax 5Dmax 2.941e-02

Figure 6: D vs. K plot for LCG = 4Dmax

and LC = 2Dmax as well as the three non-local
models

Having now the non-local and coarse-
graining lengths, global calculations are con-
ducted to compare results from the discrete and
damage models.
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Figure 7: Range of non-local results

To capture all possible solutions, upper and
lower bounds of the D–K plot are considered,
with the corresponding fits of At, Bt, and Ktr0.
Hence, three sets of non-local parameters are
determined: two representing the extreme pos-
sibilities and one for the best fit. The D–K
plots, as well as the three non-local model pa-
rameters, are shown in Figure 6, while the over-
all force-displacement result is shown in Figure
7. It is clear from Figure 7 that the range of non-
local model results covers the LDPM findings,
except for some points in the post-peak curve
where the LDPM forces are slightly higher than
the non-local ones.

6 VALIDATION
It is well established that LDPM captures

size effects [16, 6, 12, 17, 8] and that a non-local
model can describe size effect results of three-
point bending tests on notched beams [11]. To
validate our calibration, size effect tests will be
simulated for the non-local damage model cal-
ibrated in the previous section and compared
with LDPM results.

Three geometrically identical beams of vary-
ing sizes and a constant thickness of 50 mm are
examined. The beam depths are 100 mm, 200
mm, and 400 mm, with a span-to-depth ratio of
2.5. All beams are notched with a notch thick-
ness of 2 mm and a length-to-depth ratio of 1/5.
The LDPM parameters used in the previous sec-

tion are considered here. All beams are shown
in Figure 8, with larger beams shown in light
grey in each figure for comparison.

(a)

(b)

(c)

Figure 8: Identical beams for size effect calcu-
lations. Depths are (a) 100 mm, (b) 200 mm and
(c) 400 mm

The results are analyzed using Bažant’s side
effect theory [2]. This method explores the con-
nection between the nominal stress, σN , and the
characteristic dimension, D, for geometrically
similar specimens [10]. The proposed formula
is outlined in equation (21) where, B represents
a material property depending on the shape of
the sample and the mechanical problem, ft is
the tensile strength, D is the sample’s dimen-
sion, and D0 is the characteristic dimension.
The values of Bft and D0 are obtained through
linear regression in the form Y = AX + C,
where X = D, Y = ( 1

σN
)2, Bft = 1√

C
, and

D0 =
C
A

.

σN =
Bft√
1 + D

D0

(21)

The nominal stress σN is computed using
simple beam formulas, shown in equation (22)
where F is the maximum load, S is the span, b
is the beam’s width and D is the depth of the
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beam. Results are shown in Figure 9. where
log( σN

Bft
) is plotted versus log( D

D0
).

σN =
3

2

FL

b(0.8D)2
(22)

Figure 9: Size effect calculation

The inverse relationship between the mate-
rial’s strength and the beam size is clear, mean-
ing that as the beam dimensions increase, the
strength decreases. The strength reduction ob-
served in the LDPM calculations appears to fall
within the range of the strength reduction pre-
dicted by the non-local model.

Two other geometries are also considered for
the validation of the non-local calibration: a
notched cube and an L-shaped beam. Start-
ing with the notched cube, the sample is sub-
jected to uniform tensile stress, and results from
LDPM and non-local calculations are com-
pared. The cube is 400 mm in width and height,
with a depth of 100 mm. The notch-to-width
ratio is 1/5, with a notch thickness of 4 mm.
The geometry and results are shown in Figure
10 and Figure 11.

Figure 10: Notched Cube Geometry.

Figure 11: Notched Cube Calculation results.

The predicted non-local results do not match
exactly with the LDPM calculations. The onset
of non-linear behavior in the non-local model
occurs earlier than in the LDPM results. This
discrepancy is directly related to the Ktr0 pa-
rameter, which influences the damage threshold
in the non-local model. This threshold has a
great influence on the computations and turns
out to be the quantity with the largest variation
on the fits that result from the D–K plot (upper,
lower bounds and best fit). It is this quantity
that is calibrated with the less confidence.

In a second series of validation examples, L-
shaped samples are considered, with heights of
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200 mm, 400 mm, 800 mm, and 1600 mm, and
a constant depth of 50 mm. The samples are
shown in Figure 14. These L-shaped samples
are fixed at the bottom face and subjected to a
vertical force from the side. The geometry, as
well as the results from LDPM and non-local
calculations for the 400 mm L-shaped samples,
are shown in Figure 12 and Figure 13.

Figure 12: L-Shaped speciment Geometry.

Figure 13: L-Shaped speciment calculation re-
sults

Similar to the notched cube observations, the
predicted non-local range of results for the L-
shaped beam falls within the same magnitude as
the LDPM calculations. However, they do not

match, with the primary difference being again
the damage threshold. Size effect calculations
are also performed for these samples.

Bažant’s size effect law is also fitted for the
L-shaped specimens. The size effect is fit-
ted from LDPM calculations and the prediction
from the non-local model is compared to the fit.
Results are shown in Figure 14 and Figure 15.

Figure 14: L-Shaped samples.

Figure 15: Size effect calculations for L-Shaped
speciment

The nominal stresses obtained from LDPM
calculations are slightly higher than those pre-
dicted by the non-local model. The results also
indicate that the non-local model produces a
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size effect curve that is shifted. A consistent
shift suggests that the model introduces a sim-
ilar magnitude of error across all sizes, mean-
ing that the non-local model does not provide
an incorrect description of size effect, which is
biased whatever the specimen size, but the the
model is probably too simple to capture the re-
sponse of L-shaped specimen properly, being
fitted on another geometry of fracture test.

7 CONCLUSIONS

Lattice calculations can provide high-fidelity
mechanical responses of geomaterials ([1]).
Homogenized results can be used either for the
calibration of continuum models or in a data-
driven approach. In this work, coarse grain-
ing LDPM model responses is employed with
coarse graining lengths varying from one to five
time the maximum aggregate size. The CG-
LDPM results are then used to calibrate a non-
local damage model with an internal length cal-
ibrated from the width of the fracture process
zone obtained in the LDPM calculation. The
Sum of Squared Residuals of the difference be-
tween theD and K values obtained from the fit-
ted non-local model and the coarse-grained data
is then computed and the coarse-graining length
that minimizes the SSR is considered.

We observed a wide range of possible non-
local results, primarily due to the sensitivity of
the constitutive equations in this model. Al-
though the LDPM results fall within the non-
local calculations for the notched beam, we no-
ticed that the results for different geometries
falls within the same order of magnitude as
the LDPM calculations, but they do not match.
The main difference is the onset of the non-
linear behavior, which is controlled by Ktr0 in
the non-local model and hard to fit with suffi-
cient accuracy. We believe also that the damage
model used is too simple to fully capture the
global behavior of quasi-brittle materials, and
its calibration remains dependent on the speci-
men’s geometry.

Figure 16: The dissipated energy from LDPM
and two non-local calculations with LC =
2Dmax and LC = 4Dmax.

It might also be important to compare the
energy dissipation curves from an LDPM cal-
culation with those from the current non-local
model, calibrated using LCG = 4Dmax and
LC = 2Dmax, as well as from the non-local
model calibrated in previous works with LCG =
4Dmax and LC = 4Dmax [19]. The current
model better represents the width of the frac-
ture process zone (FPZ) observed in the LDPM
calculation, and at the same time the fit of the
LDPM response of bending beams turns out to
be more accurate. Therefore, it is important to
constrain the size of the FPZ predicted by the
non-local model to match with LDPM results
instead of relying solely on the fits of stress-
strain histories.

Although promising results have been found
in this work, as mentioned previously, we be-
lieve the model used cannot capture complex
behavior of quasi-brittle materials. Several im-
provements could be proposed, including but
not limited to adding additional physical param-
eters, which would enhance the model’s accu-
racy. Nevertheless, we think that applying CG-
LDPM results in a data-driven approach is more
promising, as this would eliminate the need for
a macroscopic material model.
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de Pau et des Pays de l’Adour and Northwest-
ern University.

REFERENCES
[1] Ashari, S. E., Buscarnera, G., & Cusatis,

G. (2017). A lattice discrete particle
model for pressure-dependent inelasticity
in granular rocks. International Journal
of Rock Mechanics and Mining Sciences
91:49–58.
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