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Abstract. Rock-concrete interface is found in various engineering structures such as dams, tunnels,
bridge piers etc. These structures are subjected to cyclic loading resulting in fatigue. Interface is the
weakest and the most critical zone which is susceptible to crack formation and propagation. Under-
standing the effect of fatigue loading on the rock-concrete interface is useful in predicting the service
life of these structures which ultimately ensures the durability of the structure. However, the het-
erogeneity that lies between rock and concrete poses significant challenge in analyzing the effect of
fatigue crack growth at the interface. Further, as seen from the literature the fatigue test data exhibit
an enormous scatter due to the inherent variability in the fatigue strength of the material as well as
the statistical nature of the load experienced by them. Hence, for a reliable fatigue life estimation a
deterministic approach is not sufficient. This paper proposes a generalized model derived from Paris’
law to predict fatigue crack propagation in the rock-concrete interface. Additionally, it employs a
probabilistic approach to estimate the fatigue life of the interface. In order to incorporate the het-
erogeneity at the interface, effective Young’s modulus is used. The inherent mixed mode condition
is included in the Paris’ law through the stress intensity factors in both mode I and mode II. The
crack propagation as a function of number of load cycles is predicted and the same is validated using
available experimental results.

1 INTRODUCTION

The rock-concrete interface is a predominant
feature of various large-scale structures such
as gravity dams, offshore structures, tunnels,
etc. and this interface acts as a potential site
for crack formation and propagation. These
structures are subjected to cyclic loading which
gradually reduces the structure’s stiffness, ul-
timately resulting in failure. The behavior of
the bi-material interface under fatigue loading is
more complex as compared to concrete or rock
alone. This complexity is because of the mis-
match in the parameters such as elastic mod-
ulus, thermal expansion etc. which makes the
stress field complex in nature.

A review of the past studies highlights the
dependence of interfacial fracture behavior on
the mode mixity ratio. For instance, Slowik
et al. [11] observed that under mixed-mode
loading, interfacial cracks tend to kink into the
adjoining material, illustrating the critical role
of loading conditions. Similarly, Yang et al.
[4] studied single-notched concrete-rock beams
and reported that Mode I fracture toughness at
the interface is significantly influenced by the
mode mixity ratio. Moreover, various studies
[3, 5] reveal that the mechanical and fracture
behavior of the interface are strongly affected
by its roughness. A smoother interface tends to
exhibit a more extensive fracture process zone,
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while increased roughness leads to higher brit-
tleness and a reduction in the process zone size
[13].

Considerable efforts have been directed in
the past for predicting fatigue crack growth in
concrete. For example, Bazant and his group [1,
2] introduced a size adjusted model for fatigue
crack propagation in concrete by incorporating
transitional sizes into the traditional Paris’ law
framework. Shah et al. [10] examined the fa-
tigue crack behavior in the concrete-concrete
interface and derived an analytical model for
predicting the fatigue crack growth using the
principle of dimensional analysis. Zhao et al.
[14] used the adjusted Paris’ law to predict the
fatigue crack growth in rock-concrete interface.
However, loading condition as pure mode I.

Moreover research related to understanding
the fatigue crack growth in bi-material interface
is primarily experimental and mostly limited to
concrete-concrete interface. Due to the intrinsic
heterogeneity in strength across different ma-
terials, a significant scatter has also been ob-
served in the fatigue life prediction in these ex-
periments. In line with this, the objectives of
this research are to predict fatigue crack growth
in the rock-concrete interface using a modified
version of Paris’ law and also estimate fatigue
life using a probabilistic distribution model.

2 MECHANICS OF INTERFACE
CRACK

A crack that initiates at an interface may kink
into one of the materials or grow along the in-
terface. The relative toughness of the interface
and the material on either side of the interface
determine whether a crack is compelled to stay
along the interface or kink. For a bi-material
interface crack shown in Figure 1, the near tip
normal (σyy) and shear stresses (τxy) are given
by [7].

σyy + iτxy =
(KI + iKII)r

iϵ

(2πr)
(1)

where i=
√
−1, KI and KII are the compo-

nents of complex stress intensity factor K= KI

+ iKII and ϵ is the oscillation index given by

ϵ =
1

2π
ln

(
1− β

1 + β

)
(2)

where β is one of Dunder’s [6] elastic mismatch
parameters, which for plane strain is given by

β =
µ1(1− 2ν2)− µ2(1− 2ν1)

2[µ1(1− ν2) + µ2(1− ν1)]
(3)

Here, µ and ν represent the shear modulus and
Poisson’s ratio, respectively, with the subscripts
1 and 2 denoting the materials above and below
the interface.

Figure 1: Illustration of a bi-material interface crack

When the material above and below the in-
terface are the same then β and ϵ vanish. The
stresses exhibit significant oscillations as the
fracture tip approaches (r → 0), as seen in
Equation (1) when ϵ ̸= 0. In a bi-material inter-
face, due to the component riϵ, the balance be-
tween normal and shear stresses near the crack
tip changes gradually with the radial distance.
Unlike in a homogeneous material fracture, the
stress intensity factors KI and KII cannot be
distinctly separated to represent the normal and
shear stress intensities. This leads to a mix of
fracture modes, known as mode-mixity.

3 PREDICTION MODEL FOR FATIGUE
CRACK

Paris’ law [9], which is one of the most
widely used fatigue crack propagation models

2



Vereash Chander Sharma, K.M. Pervaiz Fathima

expresses the rate of fatigue crack growth per
load cycle as a function of the stress intensity
factor range and is mathematically stated as

da

dN
= C(∆K)m (4)

where a represents the crack length, N indi-
cates the number of load cycles; ∆K denotes
the stress intensity factor range, C and exponent
m denote material constants. In order to predict
fatigue crack growth in a bi-material interface
which inherently shows mode mixity, the tra-
ditional Paris’ law has been modified by intro-
ducing equivalent stress intensity factor ∆Keq

as illustrated in Equation 5
da

dN
= C(∆Keq)

m (5)

Different forms of ∆Keq are available in the lit-
erature. One such formulation, based on Irwin’s
energy concept [8] for mixed-mode fracture, is
being used in this work:

∆Keq =
(
∆K2

I +∆K2
II

)1/2 (6)

where ∆KI and ∆KII are the interfacial stress
intensity factor range for mode I and mode II
respectively where KI for three point bending
specimen was given by Tada et al. [12],

KI =
3PS

2D2B
(
√
a)F1(

a

D
) (7)

where P is the applied load, S is the span, D
and B are the specimen height and width re-
spectively. F1(

a
D
) is a dimensionless correc-

tion factor that accounts for the geometry of the
specimen and the relative crack depth a

D
and is

given as

F1

( a

D

)
=

1.99−
(

a
D

) (
1− a

D

)
(γ)

(1 + 2 a
D
)(1− a

D
)1.5

(8)

where γ is

γ = 2.15− 3.93
( a

D

)
+ 2.7

( a

D

)2

As the geometric factor mentioned above ap-
plies to homogeneous materials, a correction
function F2 [13] is introduced to account for the
influence of elastic mismatch at the bi-material
interface and the specimen size where,

F2

(
E2

E1

,
a

D

)
= Q1 +Q2

(
E2

E1

)
+Q3

(
E2

E1

)2

(9)

Q1 = 0.975 + 0.074
( a

D

)
− 0.062

( a

D

)2

(10)

Q2 = 0.023− 0.067
( a

D

)
+ 0.056

( a

D

)2

(11)

Q3 = −0.001 + 0.003
( a

D

)
− 0.002

( a

D

)2

(12)

The stress intensity factor in Equation (7) is
thus modified as:

K∗
I = KIF1

( a

D

)
F2

(
E2

E1

)
(13)

In order to develop a prediction model for
fatigue crack growth in rock-concrete interface
the experimental data provided by the Zhao et
al. [14] has been utilized. Rock-concrete beams
were tested under three point bending using two
loading schemes. In scheme 1, Pmin was fixed
and Pmax was varied and in scheme 2, Pmax was
fixed and Pmin was varied. The granite-concrete
interface was cyclically loaded with Pmax equal
to Y%(Pu) and Pmin equal to Z%(Pu), indi-
cated by the FGX-Y-Z symbol, where X repre-
sents the grade of concrete. Here, Pu indicates
peak load under monotonic loading. For exam-
ple FG30-85-2-1 represents concrete grade of
30, the maximum load of 85%(Pu), minimum
load of 2%(Pu) and 1 represents the specimen
number. The material properties for rock and
concrete are presented in Table 1 and material
constants C and m for different specimens are
shown in Table 2

Table 1: Mechanical properties of concrete and rock [14].

Material E (GPa) ν fc (MPa)
Rock Granite 43.89 0.17 87.91
Concrete C60 44.01 0.23 72.09
Concrete C40 39.36 0.20 55.72
Concrete C30 36.02 0.21 44.85
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Table 2: Values of m and C for all the tested specimens
[14].

Specimen No. m C
FG30-85-2-1 16.371 2.753
FG30-85-2-2 15.218 4.966
FG30-85-2-3 20.805 5.154
Mean value 17.465 4.291
FG40-85-2-1 20.854 3.439
FG40-85-2-2 15.764 2.366
FG40-85-2-3 19.751 3.758
Mean value 18.790 3.188
FG60-90-2-1 22.521 1.981
FG60-90-2-2 15.259 0.655
FG60-90-2-3 21.847 1.413
Mean value 19.876 1.350
FG60-95-2-1 25.536 2.379
FG60-95-2-2 19.092 1.649
FG60-95-2-3 15.095 1.315
Mean value 19.908 1.781

Based on these experimental data, the mod-
ified model is used for predicting mixed-mode
fracture. Separating variables of Equation (5)
we have,

dN =
1

C(∆Keq)m
da (14)

Equation (14) is then integrated from Ni to Ni+1

as crack length increases from ai to ai+1 and
this process is repeated in an incremental man-
ner until number of load cycles to failure Nf

and corresponding critical crack length ac is
achieved.∫ Ni+1

Ni

dN =

∫ ai+1

ai

1

C(∆Keq)m
da (15)

The right hand side of Equation 15 has been in-
tegrated using the integration by limit of sum
method:

N(f) = (ai+1 − ai) lim
n→∞

1

n

ai+1∑
a=ai

1

C(∆Keq)m

(16)

Equation (16) provides the number of load cy-
cles corresponding to the crack length incre-
ment from ai to ai+1. Crack length versus num-
ber of load cycles is then plotted.

Figure 2: Crack length versus number of load cycles (N)
for FG30-85-2

Figures 2, 3, 4 and 5 illustrate the relation
between crack length and the number of load
cycles under different loading conditions. The
predicted model results exhibit a good match
with the experimental data reported by Zhao et
al. [14].

Figure 3: Crack length versus number of load cycles (N)
for FG40-85-2

Figure 4: Crack length versus number of load cycles (N)
for FG60-90-2
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Figure 5: Crack length versus number of load cycles (N)
for FG60-95-2

4 PROBABILISTIC APPROACH FOR
FATIGUE LIFE PREDICTION

According to the experimental study by
Zhao et al. [14], there is a significant amount
of variation in the specimen fatigue life data as
seen in Table 3. A probabilistic model for eval-
uating the fatigue life of the rock-concrete in-
terface is presented here.

Table 3: Comparison of experimental data with the pre-
dicted data

Specimen No. Number
of Cycles
to Failure
(Experi-
mental)
[14]

Average
Experi-
mental
Cycles to
failure

Predicted
Fatigue
Life

% Error

FG30-85-2-1 11792
FG30-85-2-2 1718 7772 7900 1.646
FG30-85-2-3 9806
FG40-85-2-1 7792
FG40-85-2-2 6746 7817 7750 0.85
FG40-85-2-3 8912
FG60-90-2-1 1216
FG60-90-2-2 1450 1215 1226 0.90
FG60-90-2-3 980
FG60-95-2-1 776
FG60-95-2-2 790 703 700 0.42
FG60-95-2-3 543

The probabilistic fatigue life of rock-
concrete specimens was predicted using a
Monte Carlo simulation approach based on the
modified Paris’ law given in Equation (17). To
account for the variability in C and m, experi-
mental data for these parameters were used to
fit statistical distributions. The parameter C
was assumed to follow a log-normal distribu-
tion, while m followed a normal distribution.
The fatigue life (Nf) for each Monte Carlo real-
ization was computed by numerically integrat-

ing the crack growth equation over a range of
crack increments:

Nf =

∫ af

a0

1

C (∆Keq)
m da, (17)

Figure 6: Simulated fatigue life of FG30-85-2

Figure 7: Simulated fatigue life of FG40-85-2

Figure 8: Simulated fatigue life of FG60-90-2

where a0 and af represent the initial and final
crack lengths. Initial crack length is taken as the
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initial notch length which is 30 mm in this work,
while final crack length is crack length corre-
sponding to the failure of the beams obtained
through the fatigue experiments. The simulated
fatigue life for 10000 simulations is plotted in
Figures 6, 7, 8 and 9 which correspond to spec-
imens FG30-85-2, FG40-85-2, FG60-90-2 and
FG60-95-2 respectively. The plot shows a prob-
ability density function (PDF) for the simulated
fatigue life (Nf) , represented by the histogram
overlaid with a fitted distribution curve. The
fatigue life data follows a bell-shaped distribu-
tion, likely a normal (Gaussian) distribution, as
indicated by the smooth curve. The experimen-
tal data generally lie close to the peak of the
simulated distribution, suggesting that the sim-
ulation captures the central behavior of the ma-
terial’s fatigue life well. The histogram indi-
cates some spread in the simulated data, which
aligns with the variability in fatigue life due to
material and experimental uncertainties.

Figure 9: Simulated fatigue life of FG60-95-2

5 CONCLUSION
This study presents a generalized model de-

rived from Paris’ law, where the equivalent
stress intensity factor (∆Keq) has been used in
the place of the general mode-I stress intensity
factor in an effort to integrate the mixed mode
character of the rock-concrete interface. A large
scatter in fatigue life is observed in the exper-
imental data, hence a probabilistic model for
predicting fatigue life using Monte Carlo sim-
ulation is presented. The results of the pro-
posed probabilistic model were compared with

the available experimental data and were found
to be in good agreement.
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