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Abstract. The paper describes a simple identification procedure that can be used to construct a func-
tion relating the increased diffusivity or permeability to the current mechanical state of the material,
based on an experimentally determined relation between the excess flux along the crack and the crack
opening. The underlying mechanical model belongs to the class of phase-field formulations (or varia-
tional damage models) for quasibrittle materials, but the procedure would be applicable to other types

of regularized failure models as well.

1 INTRODUCTION

Phase-field models, which can also be con-
sidered as a special class of variationally for-
mulated gradient damage models, have become
increasingly popular because of their versatil-
ity and efficiency. Nowadays, they undoubt-
edly represent the most widely used approach
to modeling of brittle, quasibrittle [1]] and duc-
tile failure. In their original form, they were de-
veloped within a simple variational framework,
later extended to more general formulations that
can be adjusted to capture the specific features
of materials with multiple dissipation mecha-
nisms, including internal friction [2].

Gradient damage models of the phase-field
type are based on incremental minimization of
an energy functional that usually contains four
terms—the stored elastic energy (dependent on
strain and damage), the dissipated energy (de-
pendent on damage), the higher-order regular-
izing energy (dependent on the gradient of a

damage-related variable called the phase field),
and the energy of external loads. Specific prop-
erties of a model of this kind are determined by
the choice of two fundamental functions, one
of which defines the relation between the dam-
age variable and the phase field, while the other
links the dissipation density to the damage (or to
the phase field). At early stages of development,
these functions were selected more or less by
trial and error, and the primary objective was to
control a single property—the fracture energy.
This was sufficient for successful simulation of
brittle fracture, but not appropriate for materials
in which a large inelastic fracture zone devel-
ops and their behavior is characterized as quasi-
brittle. Later, the basic two functions were ad-
justed in order to cover a wider class of mate-
rials. Typically, one of these functions is pre-
scribed by a relatively simple formula, and the
other is endowed with a number of adjustable
parameters that can be used to control the re-
sulting properties.
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Once a mechanical model that can describe
cracking becomes available, it is tempting to
use it in coupled problems that also involve
transport phenomena. A simple approach can
be based on linking the mechanical damage (or
the related phase-field variable) to the modified
transport properties of the material. In this way,
the effect of cracking on the transport of pore
fluids or chemical species can be incorporated.

In this work, we propose a novel method for
direct identification of the dependence of ex-
cess diffusivity or permeability on the mechan-
ical state of damage. The objective is to repro-
duce the prescribed (e.g., experimentally deter-
mined) dependence of the extra flux along the
crack on the crack opening. It turns out that
the identification can be done incrementally, in
the sense that, in each step of the mechanical
simulation, the description of the function to be
identified is extended by a short interval, based
on one simple equation.

2 BASIC EQUATIONS

For the present purpose, it is sufficient to
consider models that exploit an energy func-
tional in the form

E(u,¢) =
= %/(1 —w(¢))Vsu: D, : Viudx +
Q

+1 / LIVl dx +

/D dx—/b~udx (D)

where u is the displacement field, ¢ is the phase
field, w is the damage variable in the traditional
sense, D, is the elastic stiffness tensor, g is a
parameter with the dimension of energy per unit
volume, /2 is the internal length parameter, D is
the dissipation function and b is the body force
vector. As usual, 2 denotes the spatial domain
that represents the solid body analyzed.

Fully general formulations might incorpo-
rate additional refinements, e.g., a split of the
elastic energy density into parts attributed to
tension and compression, with the reduction

factor 1 — w applied only on the first part. How-
ever, for the present purpose, the format pre-
sented in () is sufficient.

Incremental minimization of functional £
combined with the damage irreversibility con-
dition leads to the equilibrium equations and
to a damage evolution law that contains the
Laplacean of the phase-field variable. This
higher-order term acts as a localization limiter.
In the one-dimensional setting, the equilibrium
equation reads

(1 —w(@)Eu) +b=0 )

and the damage evolution conditions can be
written as

we(P)LEU? + grolgd” — Dy(¢) < 0 (3)
b > 0@
(wo(®)2EU” + gpolee” — Dy(d)) o = 0(5)

Here, E is the elastic modulus, primes corre-
spond to spatial derivatives, and subscript ¢ in-
dicates differentiation with respect to the phase-
field variable, i.e., w, = dw/d¢ etc.

In the absence of body forces, the equilib-
rium equation (2)) makes it possible to express

the strain as

=u = 9 6)

T T EI—w) (

where o is the stress, uniformly distributed in
space. In the active part of the process zone,
characterized by ¢ > 0, condition (3) must be
satisfied as an equality, and ehmmatlon of strain
based on (6) leads to a second-order differential
equation

0wy (9)

2E(1 —w(9))?
in which the only unknown function is the phase
field, ¢, while the stress o is constant.

Numerically, equation (/) can be handled by
the finite difference method. The stress level
o can be considered as a variable that param-
eterizes the damage process. At the onset of
damage, the phase field has a zero value ev-
erywhere, the gradient term vanishes and equa-
tion (/) is satisfied if the stress level is set to

o= f; = 1/2ED4(0)/ws(0) = \/2ED,(0).

+ gs0led” — Dy(¢) =0 (7)
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In a typical numerical increment number £,
the value of the phase field in the center
of the process zone is increased to a chosen
level ¢£§()w, and the stress is iteratively ad-
justed. Equation (/) is replaced by central dif-
ferences, and the phase-field values at numer-
ical grid points z; are successively evaluated
in an explicit manner, based on initial condi-
tions ¢(0) = o). and ¢'(0) = 0. The stress
level is adjusted until the obtained solution sat-
isfies condition ¢/®) (LI /2) = ¢/®(LF /2)
where L((f) is the active size of the process
zone after step k, defined by gzﬁ(k)(LElk) /2) =
¢® (LY /2). In other words, at the first point
where the phase-field variable at the end of the
step has the same value as at the beginning of
the step, the slope of the phase-field profile at
the end of the step must also be the same as at
the beginning of the step.

3 SPECIFIC PHASE-FIELD MODEL

As an example, consider the class of phase-
field cohesive zone models proposed (within the
framework of variational damage formulations)
by Jirasek and Zeman [3]]. In the present nota-
tion, it is described by functions

5B (w) (8)
w(g) = 1—(1—-¢)Y0P (9

where function ¢* is defined implicitly by the
equation

(1 - w)g"(w) exp (%f—go) — < (10)

The dissipated energy density is defined here
in terms of its derivative with respect to the
damage variable, D, and relations @) and (]'1;0[)
are chosen such that the local response of the
model (in the absence of localization) would
correspond to exponential softening. Parameter
g0 = fi/E specifies the limit elastic strain and
€ ¢ controls the ductility. Function g* that solves
(10) is the inverse of function ¢ that evaluates
damage from strain.
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Figure 1: Localization characteristics of the regularized
damage model.
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Note that the specific form of expression (9)
leads to w(0) = 0 and w(1) = 1. Parameter p
is typically between 0.5 and 1, and the choice
of p = 0.8 leads to a reasonable shape of the
equivalent cohesive diagram.

The numerically computed localization char-
acteristics of the model are presented in Fig.
Parts (a) and (b) show the evolution of the local-
ized phase-field profile and of the correspond-
ing damage profile. The equivalent cohesive
diagram is plotted in Fig. [Ic. It has a long
tail, characteristic of quasibrittle materials. The
equivalent crack opening w is evaluated by in-
tegrating the inelastic strain across the process
zone, which can be written as

La/2 Lq/2
w = / wedx = —/
—Lgq/2 La/2 1-
(11)

where L, has to be understood as the maximum
size of the process zone.

4 EFFECT OF DAMAGE ON TRANS-
PORT PROPERTIES

Transport of water or diffusion of chemical
species through the pore space of concrete and
similar porous materials is usually described by
a parabolic partial differential equation in the
general form

Oc 0 Oc
Co =5 (K&> (12)

where c is the primary unknown field (e.g., con-
centration, water content, relative humidity, or
pressure), C' is the capacity and K is the dif-
fusivity, permeability or conductivity, depend-
ing on the specific nature of the problem. In
the simplest case, C' and K are constant, and
the transport problem is then linear. Often, the
transport properties are affected by the current
state, expressed by the value of ¢, which leads
to a nonlinear problem. In addition, these prop-
erties can vary due to irreversible mechanical
changes such as cracking. This calls for a cou-
pled formulation that captures the simultaneous
evolution of mechanical fields and of the field
that characterizes the transport problem.

The increased diffusivity or permeability
caused by cracking can be conveniently de-
scribed by a model in which K depends on
the damage or on the related phase-field vari-
able. Our objective is to develop a framework
for a systematic calibration of such models. Let
us start by looking at a simple class of formu-
lations proposed by Wu and De Lorenzis [4]],
with the increase of K considered as a power
function with exponent m. The original source
was dealing with an anisotropic diffusivity ten-
sor, but since we are interested here in transport
along the crack, it is sufficient to consider a sim-
ple scalar relation

K(¢) = Ko+ AK ¢™ (13)

When the information on the evolution of
the phase-field profile is available, it is possi-
ble to evaluate, for any stage of the degrada-
tion process, the resulting excess flux along the
crack. The effect on transport properties can
be characterized by the proportionality factor
between this flux and the gradient along the
crack, obtained by integrating the excess local
diffusivity across the width of the process zone.
Therefore, one can reuse the results of the one-
dimensional simulation of the localization pro-
cess and, by simple post-processing, evaluate
the “excess crack diffusivity”

La/2
K., — / (K($(x) — Ko) de (14)

—La/2

Note that the physical dimension of K., is the
physical dimension of K multiplied by length.
For instance, if K is the diffusivity in m?2/s, then
K., is expressed in m?/s.

For the mechanical model presented in the
previous section, the dependence of the excess
crack diffusivity on the opening of the equiv-
alent cohesive crack w (i.e., on the quantity
that characterizes the current state of mechan-
ical degradation) is plotted in Fig. Expo-
nent m ranges here between 1 and 7. Since the
results scale with the final diffusivity increase
AK, the curves are presented in a normalized
format, with the actual K. divided by the value
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obtained at the ultimate crack opening. It is
clearly seen that low values of exponent m, such
as 1 or 2, lead to a fast initial increase of the
crack diffusitivity, followed by saturation. On
the other hand, higher values of m, such as 4 or
7, suppress the early increase and delay the ef-
fects of cracking on diffusitivity, which seems
to be closer to experimental observations.
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Figure 2: Normalized excess crack diffusivity evaluated
using the power law (I3) with various values of expo-
nent m.

The performance of the model for increased
diffusivity depends not only on the assumed lo-
cal relation between the phase-field variable and
the excess diffusivity, but also on the under-
lying mechanical model, which determines the
shapes of the phase-field profiles and the evolu-
tion of the active process zone size. It is there-
fore difficult to arrive at universally valid con-
clusions and reliable general rules for the choice
of function K (¢). Instead of using a fixed form
of this function, it is preferable to deduce it di-
rectly from the experimental data. This can be
achieved by modifying the post-processing al-
gorithm. The dependence of K on ¢ can be con-
structed incrementally and described by a table
of values with linear interpolation in between.

In a typical incremental step number k, the
maximum value of the phase-field variable in
the center of the process zone increases from
gzﬁffia_xl) to gbffi()m, where £ = 1,2,3,..., and

¢$,%z = (. The values of K that correspond
to phase-field values up to ¢£S;x1) have already
been identified in the previous steps. Suppose
that the dependence in the range between ¢£,’§;;)
and ¢§7§2w is approximated by the linear function
K®(g) = Ko+ AK* D 40 (¢ — plk-D)
(15)
in which AK*-1 = K(¢¥.)) — Ky is al-
ready known while the slope a*) is yet to be
determined. It is now possible to numerically
approximate the integral in (I4) by

I€ET\Ty,

+A0 3 (AK® D a0 (6 - kD)

1€Ty

(16)

where Az is the grid spacing used in spatial dis-
cretization, x; are the coordinates of the grid
points, ¢§k) are the values of the phase-field
variable at these points at the end of step num-
ber k, Z is the set of all subscripts ¢ that corre-

spond to these points, and Zy, is the set of those
(k—1)

subscripts ¢ for which gbl(k) > ¢Omaz - The ex-
pression in (I6) can be written as
K, = K% 4 p®q® (17)
where
Kgo = Ax Y (K@) — Ko) +
iEI\Ik
+Az Y AKHE (18)
€Ly
PO — Ary (o —olh D) (19
i€Ty,

are constants that can be calculated. In addition,
we can obtain the crack opening w*) by numer-
ical evaluation of the integral in (TT]). By setting
K, =K CT,egcll,(w(’“)) = the target value of crack
diffusivity at crack opening w*) evaluated from
experiments, we can determine

Kcr ex w(k) - Kc(qlf)




Milan Jirdsek, Michal gmejkal and EvZen Korec

This means that the optimal function K (¢) is

now known up to gzﬁ,(ff()m and we can proceed to
the next step until the whole range is covered.

(a) empirical formula for excess crack diffusivity
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Figure 3: Identification of the dependence of diffusiv-
ity on the phase field which can reproduce experimental
data.

The described identification procedure has
been applied to the analytical formula proposed
by Zhang et al. [5] for approximation of ex-
perimental data on diffusivity of chloride ions
in concrete. Fig. [3h shows the prescribed de-
pendence of the excess crack diffusivity on the
crack opening, which has been exactly repro-
duced by the present approach with the numer-
ically constructed function K(¢) depicted in
Fig. Bb. The small irregularity (lack of mono-
tonicity) in the region of ¢ slightly below 0.8 is

related to the sudden change of curvature of the
assumed experimental diagram at w slightly be-
low 0.1 mm, and it can be eliminated if a small
deviation from the assumed diagram is permit-
ted.

S CONCLUSION

We have described and tested a procedure
for identification of the optimal form of func-
tion K (¢) that permits simulations of the effect
of cracking on enhanced transport of fluids or
chemical species along the process zone using
a phase-field model for quasibrittle materials.
Feasibility of the proposed approach has been
demonstrated. A more detailed comparative
study will be published in a follow-up journal
paper, and applications to multi-dimensional
simulations will be presented at the conference.
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