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Abstract. The smooth Crack Band Model (sCBM), conceived in 2021, incorporated a novel local-
ization limiter that is imposed on the ’sprain’ field, representing the second-gradient of displacement,
to prevent spurious damage localization during fracture growth. A following study in 2023 presented
an improved model, called the smooth Lagrangian Crack Band model (slCBM), in which the term
“spress” was introduced as the force variable work-conjugate to the “sprain” tensor. More impor-
tantly, the numerical difficulty of the sCBM due to using the nodes of adjacent finite elements was
overcome by treating displacement vectors and their gradients as independent fields with C0 conti-
nuity in finite element implementation, constrained by second-order tensorial Lagrange multipliers.
Combined with the microplane model M7 for triaxial softening damage, our numerical validation of
the gap test results using the slCBM demonstrates accurate reproduction of size effects under varying
crack-parallel stresses. The same, though with path-dependence limitations, is achieved by a simple
formula for predicting the crack-parallel stress effects on the fracture energy. Traditional line crack
models, including their phase-field reincarnation, give errors of up to 100%. Further it is demon-
strated that the existing strain-gradient theories, lacking the resistance to material rotation gradients,
predict incorrect fracture patterns with load errors up to 55% error in the case of Mode II and III
fractures and for Mode I fractures mixed with shear loading. The crack-parallel stress effect appear
to be universal for all materials, including atomistically sharp crystal cracks. There are fundamental
implications for the theory of fracture mechanics.

1 INTRODUCTION

Traditionally, the fracture energy was be-
lieved to remain constant as a material property.
However, a simple groundbreaking experiment
known as the gap test, conceived in 2020 [1],
demonstrated that the fracture energy of con-
crete is not a constant but varies by as much a
100% or more as a function of crack-parallel

normal stresses. This phenomenon has sub-
sequently been confirmed in other quasibrittle
material such as fiber-polymer composites [2]
and fiber-reinforced concrete (FRC), and prob-
ably exists for all materials. Ongoing MD simu-
lations indicate that it also occurs atomistically
sharp cracks in crystals.

In 2023, the new concept of sprain energy
and sprain forces derived from it [3] was pro-
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posed to avoid the mesh sensitivity issues of
a softening damage constitutive law and to re-
produce the correct sensitivity to crack parallel
stresses (the term ”sprain” was borrowed from
medicine where it means the damage to a lig-
ament over a finite length without any break).
Curvature resisting sprain forces were derived
from the sprain energy and applied on the nodes
of a FE mesh. But some of the sprain forces had
to be applied on the nodes of adjacent finite ele-
ments, which increased the running time of the
FE program by an order of magnitude and com-
plicated programming.

To overcome this problem, a groundbreak-
ing method called the smooth Lagrangian crack
band model (slCBM) was formulated. It was
based on curvature-resisting spress-sprain rela-
tions. The purpose of the spress was to resist the
curvature (or the hessian) of the vectorial dis-
placement field in the softening damage zone
(the term ”spress” tensor denoted the derivative
of the total energy density with respect to the
sprain tensor). This approach allowed both the
displacements and their gradients to be repre-
sented by linear shape functions of C0 conti-
nuity, constrained by a second-order Lagrange
multiplier tensor. In this way, the need for using
the nodes of the adjacent elements was elimi-
nated. This achieved high computational effi-
ciency.

2 SPRAIN ENREGY DENSITY
The basic hypothesis of this new theory is

that the Helmholtz energy density in the con-
tinuum is a sum of two terms, the second term
augmenting the standard expression:

Ψ̄(ϵ, ξ) = Ψ(ϵ) +Φ(ξ) (1)

where Ψ(ϵ) represents the standard strain en-
ergy density and Φ(ξ) denotes the sprain energy
density. Here ϵ is the strain tensor and ξ is the
sprain tensor, both dimensionless; η is used to
represent the strain gradient tensor (with dimen-
sion m−1). In Cartesian coordinates xi (where
i = 1, 2, 3 for 3D, or i = 1, 2 for 2D), its com-

ponents are defined as:

ξijk = l0ui,jk, ηijk = ϵij,k

ui,jk = ηijk + ωij,k

(2)

(the subscripts following a comma indicate par-
tial derivatives). The displacement vector com-
ponents are denoted by ui, while ϵij = (ui,j +
uj,i)/2 represents the linearized small strain
tensor, and ωij = (ui,j − uj,i)/2 describes the
material rotation tensor (corresponding to small
strain tensor). l0 is the material length char-
acterizing the size of the fracture process zone
(FPZ).

The energy framework of the model is com-
plemented by three essential relationships:

Φ(ξ) =

∫
sijkdξijk, (3)

sijk =
∂Φ(ξ)

∂ξijk
(4)

sijk = κ
〈
|ξ| − C

〉
ξijk/|ξ| (5)

where Φ(ξ) is a function of the dimensionless
third-order tensor ξ. Parameter κ represents the
sprain stiffness, while |ξ| denotes an appropri-
ate norm of ξ (typically ∥ξ∥2). The threshold
C determines the value below which the ef-
fects of displacement field curvature on dam-
age become negligible, which is a condition that
prevails in most of the structure volume. In
that volume the classical continuum mechanics,
with no sprain energy, applies.

spress-sprain relation in Eq. (5) has a dif-
ferent purpose than the stress-strain constitutive
relation. Its purpose is essentially geometric in
nature—to limit the displacement curvature as
required by material heterogeneity.

3 TENSORIAL LAGRANGE MULTI-
PLIER CONSTRAINING APROXI-
MATE DISPLACEMENT GRADIENT

The generalized potential of the structural
system can be expressed as:

Π(u, ζ,λ) = Win −Wex (6)
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Zdeněk P. Bažant, Houlin Xu, Anh Tay Nguyen and Yang Zhao

where the internal energy Win and the external
energy Wex are defined as [4]:

Win =

∫
V

Ψ[ϵ(u)] dV +

∫
V

Φ[ξ(ζ)] dV

−
∫
V

λ(∇u− ζ) dV

(7)

Wex =

∫
V

f(x) · u dV (8)

In the last equation, we introduced a sep-
arate dimensionless second-order tensor field,
ζ, which approximates the actual displacement
gradient ∇u. It is constrained to it in a weak
sense by means of the tensorial Lagrange multi-
plier λ, which is a variable throughout the struc-
ture. The sprain tensor ξ is then represented
through the first gradient of ζ multiplied by the
characteristic length l0

ξ = l0∇ζ (9)

This formulation provides a comprehensive
framework for analyzing material behavior dur-
ing fracture. It incorporates both traditional
strain energy and the novel sprain energy com-
ponents, and requires only a modest general-
ization of a program for the crack band model
(CBM).

4 COMPUTATIONAL IMPLEMENTA-
TION AND OPTIMIZATION

The three-dimensional implementation of
our model presents another computational chal-
lenge. The full formulation requires 21 de-
grees of freedom (DoFs) per node: 3 DoFs
for displacement u, 9 for displacement gradient
∇u, and 9 for the independent gradient field ζ.
For an 8-node 3D brick element, this amounts
to 168 DoFs, demanding substantial computa-
tional resources.

To make the computations more tractable,
we developed two optimization strategies. First,
we can implement a staggered solution scheme
in which we postpone the updating of the La-
grange multiplier tensor to the subsequent load
step or iteration. Thus the number of DoFs per

element gets reduced to 96, which is manage-
able.

Second, and more effectively, we can exploit
the physics of crack propagation by knowing
that the curvature (sprain) threshold C is typi-
cally exceeded only in the (x, y) plane, where x
represents the crack propagation direction and y
the crack in-plane normal direction. This allows
us to simplify the formulation to:

u = [u, v, w]1×3 ζ = [ζij]2×2 λ = [λij]2×2

(10)
where i, j ∈ 1, 2. This computational optimiza-
tion reduces the number of DoFs per node to
11 (i.e., to 88 per 8-node brick element). This
provides an efficient computation for common
test configurations such as the three-point-bend
(3PB) specimen (shown in Fig 2A), the gap test,
and the four-point-bend (4PB) shear tests, while
the computations remain exact when the thresh-
old C is not exceeded in the (x, z) and (y, z)
planes.

Our numerical implementation, validated
across multiple platforms (COMSOL, Matlab,
and Abaqus), employs weak variational equa-
tions derived from the energy functional. COM-
SOL proves particularly effective for postpeak
softening simulations under crack mouth open-
ing displacement (CMOD) control, while the
applied load is treated as a global unknown.

The model leads to consistent displacement
fields in both static and explicit dynamic analy-
ses, despite the absence of time-dependent evo-
lution equations for ζ and λ. For optimal
mesh design, our smooth spress-sprain relation
indicates that the element size, h, should be
h ≈ l0/6, where l0 is the material characteris-
tic length determined through scaled size effect
tests [5]. The sensitivity analysis in Fig. 2D
illustrates how varying the threshold parameter
C affects the results.

5 INABILITY OF CLASSIC STRAIN-
GRADIENT DAMAGE MODELS TO
PREDICT FRACTURE WITH SHEAR

The diversity and multitude of the fracture
tests of concrete offers an ideal testing ground
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Figure 1: Rotating the square FE mesh in slCBM by 5° to 30° produces identical results.
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Figure 2: (A) Near-notch damage zone in a symmetric 3PB test specimen using 3D slCBM with the (x, y) plane curvature
control: 3-Point Bend test specimen (3PB). (B) Map of sprain energy intensity in the near-notch region. (C) Profile of
sprain energy density ratio η across the damage band front (η = sprain energy density / total energy density); the cur-
vatures at both ends are not restricted because η < threshold. (D) Near-notch strain profiles for three cases of threshold
parameter: 10−6,10−5 and 1.5×10−3 (on the right, the threshold is too large to limit curvature, which makes the situation
equivalent to the original crack band model, CBM).

for fracture models of different types. Compar-
isons with eleven different loading configura-
tions demonstrated that peridynamics is merely
a fiction, unable to reproduce most experimen-
tal data from the literture [6] (except for a few

”nondistinctive” test [7] which can be fitted by
most models and thus prove nothing). Likewise,
while the recent fad of phase-field fracture can
reproduce well the linear elastic fracture me-
chanics (LEFM) it can do so only in absence
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Figure 3: Comparisons of the slCBM with the Strain Gradient theory: (A) In symmetric fracture tests such as 3PB, the re-
sponses obtained from both models differ negligibly because the rotation gradients in the notch line vanish and on its sides
are usually not big enough to exceed the threshold. (B,C) These are Mode II four-point-bend (Iosipescu) shear tests with
two different constitutive laws – scalar damage law and Grassl’s constitutive for concrete (which is CDPM law featured
in software COMSOL). The material rotation gradients on the notch line are significant and increase in postpeak. (D,E)
The absence of ωxy,x in strain-gradient model leads to different fracture pattern evolution. After exceeding threshold C=
5 · 10−5, κ was kept constant; κ = 1 MPa in (A); κ = 0.11 MPa in (B); κ = 0.105 MPa in (C); κ = 0.01 MPa in (D,E).

of crack-parallel stresses, which is a rare case
practical situations. This renders the phase-field
model almost useless. The same can be said of
all cohesive crack models.

Recently, though, the strain gradient damage
models were shown to be effective for Mode I
opening fractures. Nevertheless, these models
have an Achilles heel—fracture caused by shear
or accompanied with shear loading.

The incorporation of strain gradients into
material constitutive equations originally

served a specific purpose: to create a homog-
enized model of elastic microstructures that
included additional localized degrees of free-
dom [8–10]. To check the difference between
the strain-gradient damage model [11–13] and
the present sprain model, we exploit the fact
that the former is obtained as a special case
of the latter when the displacement gradient is
symmetrized in the coding [14]. That way we
can use the same material constitutive model
for both cases, which is essential for a mean-
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ingful comparison. The symmetrization means
that the gradient of material rotation is not re-
sisted, which intuitively explains why in (Fig.
3A-C) the train gradient model markedly un-
derestimates the stiffness.

Our comparative simulations of 3PB Mode
I and 4PB Mode II fracture tests (Fig. 3A-
E) reveal three findings: 1) Under symmetric
loading conditions (Mode I fracture), where the
crack line serves as the deformation symme-
try axis, both models produce nearly identical
results. 2) The slCBM captures distinct crack
evolution patterns, detecting plane crack for-
mation before peak load due to its enhanced
sensitivity to rotation gradients. 3) In shear or
mixed-mode scenarios, the slCBM predicts sig-
nificantly higher loads - up to 55% greater than
the strain-gradient model.

Similar or even stronger differences may be
expected for Mode III fracture under torsional
loading.

6 CONCLUSIONS
1. The slCBM demonstrates superior accu-

racy in reproducing experimental results
from gap tests, size effect tests, and Mode
II shear tests on quasibrittle materials.
This is a significant improvement over
traditional line crack models, the phase
field included [6].

2. The damage zone width at crack band
front varies with the crack-parallel stress
while remaining governed by a material
characteristic length, which is a material
constant.

3. The strain-gradient damage theories omit
resistance to the material rotation gradi-
ents. This is not important for Mode I
fracture but causes major errors for Mode
II and III fracture as well as for com-
binations of Model I with shear loading
as in shear failure of reinforced concrete
beams. An error f 55% in load and wrong
predictions of the failure patterns have
been documented.

4. The strong influence of crack-parallel
stress on fracture energy has been
experimentally demonstrated for con-
crete, fiber-reinforced concrete and fiber-
polymer composites, and is also indi-
cated by MD simulations for atomisti-
cally sharp cracks in silicon. Probably it
exists in all materials.
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