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Abstract. Heterogeneous porous materials, characterized by variations in porosity and pore distribu-
tion, exhibit complex mechanical behavior, particularly when subjected to fracture. Here, we present a
numerical method using phase-field fracture technique in FEniCSX to study how changes in porosity
and pore distribution impact the fracture behavior of cementitious materials. The results demonstrate
that not only porosity but also pore morphology plays a significant role in fracture propagation and the
overall response of cement-mortar. These findings highlight the importance of considering both the
quantity and spatial arrangement of pores when assessing the mechanical performance and durability

of cement-based materials.

1 INTRODUCTION

Porous materials have played a transfor-
mative role in advancing civilization, driving
progress across various scientific and engineer-
ing disciplines. From ancient water filtra-
tion techniques [26] to modern applications in
designing efficient and sustainable infrastruc-
ture [18], porous materials have consistently
demonstrated their uniqueness and resilience in
shaping the world around us. Cement-based
materials, as a class of porous materials, are
commonly used materials in infrastructures due
to their strength, durability, and overall perfor-
mance. For example, concrete has complicated
and complex pore distribution with varied pore
shapes, and pores ranging in size from micro-
scopic to macroscopic [16,23,30]. Such com-
plex morphology, heterogeneity and variability
in their porous structure pose challenges in opti-
mizing their response for different applications
and under different conditions.

To address these challenges, numerous stud-

ies, both experimental and numerical, have
been conducted to understand the role of un-
derlying pore morphology and the impact on
the overall behavior of the material. Exper-
imental approaches, including imaging tech-
niques such as X-ray tomography and scan-
ning electron microscopy (SEM), allow for de-
tailed analysis of pore morphology, size distri-
bution, and connectivity [21,28]. These meth-
ods provide valuable insights into how the ma-
terial’s pore structure influences its mechani-
cal and permeability properties. Additionally,
numerical modeling, including finite element
analysis (FEA), has been employed to simulate
the behavior of cement-based materials under
various conditions, helping to predict their re-
sponse to environmental factors and mechani-
cal loading [8,|12]]. Overall, many researchers
have highlighted the variations in pore size, dis-
tribution, and connectivity can significantly af-
fect the material’s mechanical properties, per-
meability, and durability [2,/17,[27,29].
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With recent advancements in additive man-
ufacturing, the goal is to design materials with
controlled porosity, including greener and safer
cement-based structures. Achieving this re-
quires a thorough understanding of the pore-
property relationships in these heterogeneous
systems, which is essential for developing tai-
lored porous materials with desired properties.
Therefore, this paper presents a numerical as-
sessment of the role of the underlying porous
structure in cementitious materials.

2 METHODOLOGY

To determine how variation of microscale
pore morphology in concrete affects its
macroscale fracture behavior, a two-step nu-
merical process is implemented.

The pairing of numerical homogenization
with phase-field modeling allows one to cir-
cumvent the intractable task of capturing mi-
croscale features at the macroscale and solv-
ing a finite element boundary value problem
with a high element count. Instead, anisotropic
constitutive effects that capture microscale het-
erogeneity are linked to a macroscopic model
through an effective constitutive tensor, en-
abling phase-field fracture to model fracture
propagation at larger scales while preserving in-
formation from smaller length scales.

As shown in Figure (1| the first step is to
capture the effective or macroscale constitutive
behavior of the concrete body using numeri-
cal asymptotic homogenization. This is accom-
plished by solving a boundary value problem
over the smallest repeating unit of the under-
lying periodic structure. This microscopic unit
is referred to as the Representative Volume Ele-
ment (RVE).

The second step of this methodology is to
solve for the fracture behavior corresponding to
the loading scenario of the body. To achieve
this, phase-field or diffusive modeling is em-
ployed. This approach is based on a variational
formulation of Griffith’s energy balance, where
the crack is represented as a scalar damage vari-
able, ¢. The effective constitutive tensor, C,
computed through numerical homogenization,

is then used in the strain energy component of
the energy balance formulation at the macro-
scopic level.

In this work, we implemented the aforemen-
tioned methodology in FEniCSx and analyzed
the resulting fracture behavior for the classical
problem of a single-edge crack plate under ten-
sion. To investigate the impact of the underly-
ing pore morphology on the overall fracture be-
havior, several cases with varying porosity and
pore distributions were considered.

2.1 Homogenization

Asymptotic homogenization is based on
three assumptions [14,15,/19,25]]. First, it is as-
sumed that a large separation in scale exists be-
tween the microscale heterogeneity, the length
scale of the RVE, and the macroscale feature
of a given domain. Secondly, the displacement
field is assumed to be a two-component field
consisting of a periodic microscale component,
u!, and a macroscale component, u°, which is
assumed to be constant over the length scale
of the RVE. Correspondingly, the strain field,
€, defined as the symmetric portion of the dis-
placement gradient, is also composed of both a
periodic, €', and constant component, ’. This
yields the following relation:

u(z) = u’ +u'(z) = Lx+ut(z) (1)

Lastly, it is assumed that the macroscale
strain energy due to loading is equal to the strain
energy over the RVE.

<o(x):elxr) >=<o(x) ><e(x) > (2)

where

< f>=

QRVE

/ JdQrve  (3)
QrvE

and

o) =C(2): (@) +€) @)
Defining a local boundary value problem

over the domain of the RVE, we prescribe €” as
unit strain tensors corresponding to each unique



Ryan Nielsen and Pania Newell

Microscale/RVE
discretization

&% FEniCSX solves

< eMup(x)) : C : et (vp(z

Gmsh

) >=
— <0 e(up(z) > -

Obtaining effective
constitutive tensor, ('

Macroscale/BVP
discretization

&% FEniCSX uses C

to solve for ¢

Gmsh

/(1 - ¢h)2t7(uh) ce(v)d=0
Q

/Q (VqV Gl + q(% +29)¢n — 29q)dQ = 0

Figure 1: Flowchart of the approach used in this study.

component of C. In two dimensions, this re-
quires unit strain tensors defined along each of
the kI directions, where ), = 1. We there-
fore define the weak formulation of the bound-
ary value problem over the RVE as,

< up(z)) : C: M vp(z)) >=
—<:C:((x)) > (5)

where u;, and v;, are the corresponding peri-
odic trial and test functions.

Using the Hill-Mandel condition from Equa-
tion 2} we compute C' from the relation,

B aukzl

2.2 Phase-field

While stress intensity factor-based fracture
mechanics methods analyze BVP in which the
crack is defined as part of the domain boundary,
the phase-field method is based on Griffith’s en-
ergy balance, GG. = v [[10], where 1) is the strain
energy density of a cracked body under loading
and G, is the critical energy release rate. This
can be rewritten as an energy functional by re-
placing the discontinuity in the domain with a
separate scalar field variable, ¢ [4,(7,9,13].

/ d(@)o : 0+

Q
1 1
§/QGC(7(1—<Z>)2+Z|V¢\2)8Q, )

This “crack identifier” takes a value of 1 at
the crack location and smoothly transitions to 0
at points farther from the crack. The rate of this
transition is controlled by the length-scale term,
[. Further derivations yield the weak form of a
coupled system of equations as,

/Q(l — én)?o(up) 1 e(v)d2 =0 (8)

/ (VgV oGl + q(% +2¢)pp, — 21hq)dQL = 0
Q
)

It should be noted that the test functions cor-
responding to trial functions wu;, and ¢y, are v and
q, respectively [20].

2.3 Case studies

As shown in Figure [2] this study used the
classical benchmark problem of a single-edge
crack plate under tension. The material was
assumed to have a porous microstructure, with
material properties of concrete.

To investigate the role of porosity and vari-
ation in pore morphology, eight representative
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Figure 2: Schematic of a single-edge crack plate under tension. Dirichlet boundary conditions prescribed along bottom

and top edges.

volume elements (RVEs), each exhibiting a dis-
tinct microscopic porous structure of hardened
cement paste, the primary matrix within con-
crete at the microscale, were examined. As
shown in Figure (3| two sets of four RVEs with
different pore distributions were selected while
porosity remains constant (i.e., 20 and 30%). It
should be noted that even though any changes in
the underlying porous structure typically affect
G., for simplicity, this value was kept constant
in this study.

To generate these morphologies, pore sizes
and locations were randomly computed using
Python’s Random libraries. This data was then
used to create periodic finite element meshes
in Gmsh [11]. For discretizing the RVE, tri-
angular elements with sufficiently small sizes
were employed. These meshes were then used
to solve the constitutive tensor, C' using the
open-sourced finite element solver, FEniCS [1,
3. Material properties for the hardened ce-
ment paste matrix were computed from homog-
enization of the nanoscale mixture of cemen-
titious material with 13.18% capillary pores.
This nanoscale porosity is only represented at
the microscale as the homogenized mixture.
The microscale hardened cement paste was
then homogenized to include a mixture of 65%
sand [22,24]]. This mixture then served as the
solid matrix for the RVEs defined above. The
boundary value problems were defined to con-
strain displacement as periodic and unit strain
body loads were prescribed. To remove rigid

body translations from the problem, < u;, >= 0
was enforced using Lagrange multipliers as de-
scribed by Bleyer [6]. The resulting solutions
were then used to compute C' from Equation@

One the C' is determined, the macroscopic
single-edge crack plate can be solved numeri-
cally. To accomplish this, the domain is dis-
cretized using Gmsh with linear quadrilateral
elements, where the element size is determined
by half the length of the [ term in Equation [9]
The o and ¢ terms in Equations [§] and [9] are
computed using the effective constitutive ten-
sors, C for each RVE. Dirichlet boundary con-
ditions are applied to the bottom and top edges
of the plate. The displacement on the bottom
edge is fixed in both directions, while increas-
ing displacements along the top edge are pre-
scribed to induce tensile stress fields within the
domain. Phase-field formulations are solved
in FEniCSx [5]], an extension of the legacy
FEniCS solver with enhanced functionality for
quadrilateral meshes.

3 RESULTS

To evaluate the structural effect of pore mor-
phology variation for a given porosity, reac-
tion forces occurring at the fixed bottom edge
vs the increasing displacement prescribed along
the top edge of the plate are compared.

One can observe from Figure[d{a) that higher
porosity reduces the maximum force, while
the materials experience greater displacement.
This is primarily due to the reduced stiffness
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Figure 3: Eight selected RVEs to represent variation in the microscale pore morphology of concrete.

of the material, as increased porosity leads to
a decrease in the effective load-bearing capac-
ity, allowing for larger deformations under the
same applied force. Moreover, as one can see
from Figure [@(b), for the same porosity, the
morphology also influences the overall load-
displacement curve. Specifically, an increase in
pore density, while keeping porosity constant,
results in a lower maximum force and higher
displacement. This can be explained by the fact
that variations in morphology can lead to dif-
ferent patterns of local yielding and strain lo-
calization, ultimately modifying the material’s
response to applied loads.

To illustrate the effect of microscale pore
morphology on macroscale crack propagation,
snapshots of all RVEs with 30% porosity at dif-
ferent displacements are shown in Figure[5| As
shown, the crack propagation is clearly influ-
enced by the underlying morphology. Specifi-
cally, for the single-pore case, the crack prop-
agates further at a given load compared to all
other morphologies. Additionally, clear distinc-
tions are observed among the different cases,
even though they all share the same porosity
value.

4 CONCLUSIONS

In summary, the results highlight the role of
both porosity and pore morphology in influenc-
ing crack propagation behavior. While higher
porosity reduces peak force and increases dis-

placement, the specific morphology further im-
pact the material’s response. The observed dis-
tinctions in crack propagation across different
morphologies, despite sharing the same poros-
ity value, highlight the complex interplay be-
tween structure and mechanical performance at
the microscale. This insights are important as
they enable the design of more durable and ef-
ficient materials with tailored mechanical prop-
erties for various engineering and scientific ap-
plications.
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