
12th International Conference on Fracture Mechanics of Concrete and Concrete Structures
FraMCoS-12

B.L.A. Pichler, Ch. Hellmich, P. Preinstorfer (Eds)

LATTICE AND CONTINUUM DAMAGE MODELING FOR FRACTURE OF
CONCRETE

Gilles Pijaudier-Cabot∗, Julien Khoury∗, and Gianluca Cusatis †
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Abstract. Lattice modelling of quasi-brittle materials such as concrete is a discrete, meso-scale,
description of the material in which constitutive relations are prescribed at a lower scale compared to
the scale at which continuum-based constitutive relations are written usually. The mesostructure of the
material is represented explicitly. Over the years, lattice models have become more and more efficient.
Complex nonlinear responses at the macro-scale are obtained today, while keeping the constitutive
model at the meso-scale simple compared to macro-scale ones. Prediction capabilities and accuracy
of the description of the mechanical response at the global level are, in many cases, better than those
obtained with continuum-based models, although at the price of an intensive computational effort.
In this work, we intend to draw a parallel between the Lattice Discrete Particle Model (LDPM) and
a macro-scale damage model. For this, we implement first a coarse graining approach based on
averaging the equations of conservation to convert lattice results into coarse-grained, continuum-
based, stress versus strain responses. Because stresses and strains are coarse-grained independently,
their relationship yields a database of macroscopic continuum responses. These data are then used to
calibrate a non-local damage model.

1 INTRODUCTION

The mechanical response of quasi-brittle ma-
terials such as concrete or rocks exhibit several
characteristics depending on the type of load-
ing. In most cases, when the state of stress does
not involve too much triaxial compression, fail-
ure occurs due to crack propagation. Cracking
observed in tension dominated responses is pro-
gressive. For instance, acoustic emission analy-
ses of the failure of single edge notched bending
beams (see e.g. [1, 2]) show that prior to macro-
crack propagation, micro-cracking develops in

a large zone ahead of the tip of the macro-crack,
the Fracture Process Zone (FPZ). The size of
the FPZ is related to the size of the hetero-
geneities in the material e.g., it is a few times
the maximum aggregate size.

The description of this progressive crack-
ing process cannot be performed within Linear
Elastic Fracture Mechanics (LEFM) which re-
lates to a brittle response. There are two pos-
sibilities: one is to enhance LEFM with some
type of cohesive law, thereby collapsing the
FPZ onto a line where cohesive forces oppose
to crack opening [3]. The second one is Contin-
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uum Damage Mechanics (CDM). It provides a
broad framework covering distributed cracking,
macro-crack initiation, and then crack propaga-
tion within a single setting. Its application to
quasi-brittle materials dates to the 1980’s [4].

In the simplest version of damage models,
micro-cracking is described by a single scalar
variable that degrades the Young’s modulus of
the material. Accordingly, the effect of micro-
cracking is isotropic. Introducing anisotropic
damage adds complexity in the constitutive
equations. In most cases, this is done by con-
sidering that damage is a second order tensor
(see e.g., [5]), but there exists also some gen-
eral framework that allow for more complex de-
scriptions of damage in a material [6]). Fur-
ther, permanent (plastic) strains do not exist in
a scalar damage model, although they are mea-
sured experimentally. This is the reason why
continuum damage has been coupled to plastic-
ity, in most cases damage being still defined as
a scalar variable (see e.g., [7]).

Without doubts, achieving a better descrip-
tion of the material response in a continuous set-
ting yields more and more complex constitutive
models, involving a growing number of mate-
rial parameters and calling for more and more
experiments for calibration purposes. This con-
sideration motivated researchers to streamline
the number of material parameters as much as
possible, still relying on continuum damage me-
chanics to describe the tensile response. One
may distinguish again two possibilities: in the
first one, the material response is defined at
the level of facets, within a continuum stetting.
This is exactly what is performed in the mi-
croplane model (see the M7 version in [8]). In
a recent paper, Bažant, and co-workers showed
the superior capability of such a model, com-
pared to other approaches for fracture, at de-
scribing a wide variety of experiments on con-
crete [9]. The second possibility is to depart
from a continuum description of the material
and to use a lattice approach. The microstruc-
ture of the material is introduced in the model
explicitly, and the overall mechanical response
is the result of the interactions between discrete

particles depicted mechanically with nonlinear
bonds. Inherently, because the bonds have spe-
cific orientations due to the discrete description
of the microstructure, the material behavior is
defined on facets, same as in the microplane
model.

In a sense, lattice models could be viewed
as the result of constraining the facets orienta-
tions in the microplane model to the microstruc-
ture of the material. Instead of defining all pos-
sible facets and integrating the response over
a sphere, what is typically done in microplane
models, in these lattice models there is a finite
number of possible facets resulting from the
discrete description of the material. Following
the pioneering works of Cundall, Bažant and
co-workers [10, 11, 12], the lattice approach has
been widely developed (see the review in [13]).

Lattice calculations can accurately describe
the mechanical response of geomaterials ([14]).
However, solving for equilibrium, requires the
resolution of a high number of unknowns,
which needs extensive computational resources.
Reducing the magnitude of the problem is crit-
ical for practical implementations [15]. Com-
bining LDPM with classical finite elements is
one method for reducing the size of the prob-
lem to be solved. LDPM is put in places where
a nonlinear response is needed and classical fi-
nite elements are used elsewhere, following an
elastic response [16]. Another way is to upscale
the lattice response to a macro-scale continuum
one that can serve as a reference either for cali-
bration of a macro-scale continuum constitutive
relation, or used in some data driven approach
[17]. In this contribution, we investigate the po-
tential of upscaling approaches.

2 LATTICE DISCRETE PARTICLE
MODEL

Originally developed by Cusatis and col-
leagues [18], the Lattice Discrete Particle
Model (LDPM) is a meso-scale model designed
to simulate particle interactions in granular ma-
terials, including mortar [19], engineered ce-
mentitious composites [21], concrete and fiber
reinforced concrete [20, 22]. In this model,
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spherical particles representing the grain size
distribution of the materials are arranged in the
sample from the largest to the smallest size.
A Delaunay tetrahedralization of the particle
centers, along with nodes forming the external
mesh, defines the lattice system. The domain
is then tessellated, creating a network of poly-
hedral cells surrounding each spherical particle.
The intersections of these cells are represented
by triangular facets, where stresses and strains
are expressed in vectorial form. Figure 1 pro-
vides an example of two adjacent polyhedral
cells.

Figure 1: Polyhedral Cells surrounding the LDPM grains.

LDPM incorporates specific constitutive
equations to describe tensile fracturing with
strain softening, cohesive and frictional shear-
ing, and compressive response with strain-
hardening. Since this study focuses on concrete
fracturing, the corresponding constitutive laws
are recalled only.

If xi and xj denote the positions of nodes i
and j, adjacent to the facet k, the facet strain
vector is defined as:

ek = [eNk
eMk

eLk
]t

=

[
nt
k[[uk]]

lk

mt
k[[uk]]

lk

ltk[[uk]]

lk

]t (1)

where eNk
is the normal strain component, and

eMk
and eLk

are the tangential strain compo-
nents, [[uk]] = uj − ui is the displacement
jump corresponding to facet k, lk = ∥xj − xi∥
is the distance between the two nodes, nk =
(xj −xi)/lk and mk and lk are two unit vectors
mutually orthogonal in the facet plane projected
orthogonally to the line connecting the adjacent
nodes.

The stress vector on facet k is defined as
tk = [tNk

tMk
tLk

]t, where tNk
is the nor-

mal component, and tMk
and tLk

are the shear
components. For the sake of readability, the
subscript k that designates the facet is further
dropped. The elastic behavior is formulated
through linear relations between the normal and
shear stress vector components, and the corre-
sponding strain vector components as follows:

tN = ENeN , tM = ET eM , tL = ET eL (2)

where EN = E0 and ET = α0E0. E0 ≈
E/(1 − 2ν) and α0 ≈ (1 − 4ν)/(1 + ν) are
the effective normal modulus and the shear-
normal coupling parameter, respectively. E is
the macroscopic Young’s modulus and ν is the
macroscopic Poisson’s ratio.

Concrete fracturing in mode I is always ac-
companied by shear at facets. This is a real-
istic feature since it is experimentally observed
that most fracture paths are located at the in-
terface between aggregates and cement paste.
Therefore, the cohesive fracture behaviors in
tension but also in tension-shear are impor-
tant. This cohesive fracture occurs for eN >
0. One can define an effective strain as e =
(e2N + α0(e

2
M + e2L))

1
2 , and an effective stress

as t = (t2N + (t2M + t2L)/α0)
1
2 and write the re-

lationship between stresses and strains through
tN = t.(eN/e), tM = α0t.(eM/e) and tL =
α0t.(eL/e). The effective stress t is defined in-
crementally as ṫ = EN ė and its magnitude is
limited by a strain-dependent boundary which
is written as 0 ⩽ t ⩽ σbt(e, ωsn) where

σbt(e, ωsn) = σ0(ωsn)

exp

[
−H0(ωsn)

⟨emax − e0(ωsn)⟩
σ0(ωsn)

]
.

(3)

⟨x⟩ = max(x, 0), ωsn is a variable defining
the level of interaction between shear and nor-
mal loadings. It is defined as tan(ωsn) =
(eN)/(

√
α0eT ) = (tN

√
α0)/(tT ) where eT is

the total shear strain eT = (e2M + e2L)
1
2 , and

tT is the total shear stress tT = (t2M + t2L)
1
2 .

The maximum effective strain is time depen-
dent and is defined as emax(τ) = (e2N,max(τ) +
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α0e
2
T,max(τ))

1
2 where eN,max(τ) = max

τ ′<τ
[eN(τ

′)]

and eT,max(τ) = max
τ ′<τ

[eT (τ
′)]. The strength

limit of the effective stress that defines the tran-
sition between pure tension and pure shear is
written as

σ0(ωsn)

= σt
− sin(ωsn)

2α0 cos2(ωsn)/r2st

+ σt
( sin2(ωsn) + 4α0 cos

2(ωsn)/r
2
st)

1
2

2α0 cos2(ωsn)/r2st

(4)

where rst = σs/σt is the ratio of the shear
strength to the tensile strength, σs is the shear
strength and σt is the tensile strength. The post-
peak softening modulus is controlled by the ef-
fective softening modulus in Eq. (3)H0(ωsn) =
Hs/α0 + (Ht − Hs/α0) (2ωsn/π)

nt , in which
Ht = 2E0/(lt/l − 1), Hs = rsE0 and nt is
the softening exponent. Typically, the values of
nt = 0.2 and rs = 0 are assumed and are fixed.
lt is the tensile characteristic length defined as
lt = 2E0Gt/σ

2
t and Gt is the meso-scale frac-

ture energy.
This LDPM model has been implemented in

statics, as well as in dynamics, in the Cast3M
finite element software.

3 COARSE GRAINING
The coarse-graining technique employed

here is based upon conservation laws [23, 24].
First, the upscaled mass density is calculated
from a weighted average of the local ones,
defining a convolution product: convolution of
x is (x)ϕ.

R(x) = (ρ(x))ϕ =

∫
Ω
ρ(s)ϕ(x, s)ds∫
Ω
ϕ(x, s)ds

(5)

where R is the macro-scale mass density, ρ is
the mass density at mesoscale level, ϕ is the
convolution function described in Eq. (6), and
Ω is the domain of interest.

ϕ(x, s) =
1

LCG

3

√
2π

exp

{
(
−(x− s)2

2(LCG

3
)2

)

}
(6)

LCG is the coarse graining length. The mass
balance at both scales is given by Eqs. (7, 8).

∂ρ

∂t
+∇.(ρv) = 0 (7)

∂R

∂t
+∇.(RV ) = 0 (8)

where ∇.(x) is the divergence of x, v is the
velocity field at meso-scale, V the velocity at
macro-scale, andRV the impulsion. The partial
time derivative of the coarse grained (macro-
scale) mass density can be computed by taking
the convolution of Eq. (7):

∂R

∂t
=
∂ρ

∂t ϕ
= −∇.(ρv)ϕ (9)

The macro-scale, coarse grained velocity in Eq.
10) is derived from Eqs. (8) and (9).

V =
(ρv)ϕ
R

(10)

It is a function of the meso-scale velocity field
v, the local mass density ρ and the domain’s
coarse grained mass density R. Integrating
velocities over time generates displacements,
which are used to calculate strains, Eq. (11)
shows the coarse-grained displacement U as a
function of the meso-scale displacement field
u, the local mass density ρ, and the domain’s
coarse grained mass density R for quasi-static
problems.

U =

∫
t

V dt =

∫
t

(ρu)ϕ
R

dt (11)

A similar procedure is applied for the bal-
ance of momentum. Meso and macro-scale
conservation of the momentum read respec-
tively:

∂ρv

∂t
+∇.(ρv ⊗ v) = ∇.(σ) (12)

∂RV

∂t
+∇.(RV ⊗ V ) = ∇.(S) (13)

where σ represents the meso-scale stress field
and S the macro-scale or coarse-grained stress.
The convolution of Eq. (12) yields:
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∂RV

∂t
=
∂(ρv)ϕ
∂t

= (∇.(σ)−∇.(ρv ⊗ v))ϕ

(14)

Introducing the fluctuating velocity v′ = v−
V and inserting it in Eq. (14) yields Eqs. (15)
and (16), relating the coarse grained stress S to
the meso-scale stress (σ), mass density (ρ), and
fluctuation velocity (v′):

∂RV

∂t
+∇.(RV ⊗ V ) =

(∇.(σ)−∇.(ρv′ ⊗ v′))ϕ

(15)

and then:

S = (σ − (ρv′ ⊗ v′))ϕ (16)

As this study primarily works with quasi-
static computations, the effect of the fluctuat-
ing velocity is neglected. In other words, the
coarse graining stress S may be defined using
just meso-scale stress measurements S = (σ)ϕ.
We conclude from Eqs. (11) and (16) that the
macroscopic displacements and stresses are cal-
culated separately by coarse graining the con-
servation equations.

Coarse-graining discrete results needs a pre-
liminary step because LDPM results are de-
fined by stress vectors at each facet and dis-
placements at the center of each grain. In other
words, there is no such a thing as a meso-scale
stress tensor in the discrete model. A stress ten-
sor at the center of each grain is estimated using
the stress vectors of each polyhedral cell. For
this purpose, Eq. (17) is solved after consider-
ing three unit uniaxial and three unit shear strain
tensors.

Find σ such that ∀ε∗∑
k

[(σ.n− tk).(ε
∗.n)] = 0 (17)

To summarize, LDPM results are coarse
grained and couples of stress and stress ten-
sors are obtained independently at each load-
ing step and everywhere. The process involves

a weighted average and therefore, there is a
length that comes in the picture, the coarse
graining length LCG. It is important to un-
derline that no constitutive relation is assumed
at the macro-scale. The relationship between
the coarse grained strains and stresses emanates
from the meso-scale directly, accounting for the
meso-structure of the material.

The coarse graining length is the sole param-
eter in the upscaling process that needs to be
calibrated. This is performed by considering
uniaxial loading on a cylindrical specimen in
the elastic regime. Stresses and displacements
are coarse-grained onto a regular grid of hex-
ahedral elements of size ranges from 1/2.5 to
less than 1/10 times the maximum aggregate
size. Figure 2 shows the evolution of the av-
erage uniaxial stress for different values of the
coarse graining length. We may observe that the
average stress becomes quickly constant as the
coarse graining length increases. On the same
figure, the coefficient of variation of the coarse-
grained stress distribution is plotted.

Figure 2: Influence of the coarse graining length on the
stress and co-variance in the elastic regime.

The coarse graining length is obtained by
setting the coefficient of variation less or equal
to one percent. Compared to the maximum size
of the aggregate in the meso-structure, we ob-
tain LCG=4.Dmax where Dmax is the maximum
aggregate size.

4 CALIBRATION OF DAMAGE
MODELS FROM A STRUCTURAL
RESPONSE

A plain concrete single edge notched beam,
measuring 700 mm in length, 200 mm in depth,
and with a span-to-depth ratio of 2.5, is consid-
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ered in this part. The notch thickness is 2 mm,
and its length is 20% of the overall depth. The
beam is loaded under three point bending. The
geometry and load conditions correspond to the
beams tested by Grégoire et al. [26]. Figure
3 shows the LDPM model. Five distinct sam-
ples have been generated, differing only in their
geometrical particle distribution. Then, global
responses have been averaged.

Figure 3: LDPM Particles in a Notched Beam Sample.

The main LDPM parameters are provided in
the table below.

Table 1: LDPM Model Parameters.

Normal Modulus E0 43,195 MPa
Alpha α 0.25

Tensile Strength σt 4.6 MPa
Tensile Characteristic Strength lt 200 mm

Shear Strength ratio rt 2.5

Figure 4 shows the average load versus dis-
placement response and figure 5 shows a typical
failure, with a crack that starts to propagate up-
wards at the notch tip.

Figure 4: Averaged response of the beam and time steps
at which coarse graining is performed.

Figure 5: Crack Opening as obtained by LDPM.

A grid of hexahedral elements with
sizes ranging from 1/2.5Dmax to less than
1/10Dmax, is considered for coarse-graining.
Stresses and displacement are computed for the
points shown in figure 6, and at the time steps
shown in figure 4. To avoid edge effects, the
window of points is placed above the notches
such that it is far away from the edges.

Figure 6: The coarse graining window. Red dots show
coarse graining points.

Coarse-grained LDPM calculations are com-
pared with continuum damage-based computa-
tions. The constitutive relation is defined in Eq.
(18):

σ = (1−D) · C : ε (18)

where σ is the second order stress tensor, ε is the
second order strain tensor, C is the fourth order
elastic stiffness tensor andD the damage scalar.
D ranges from 0 for an undamaged material to
1 for a completely cracked material. The equiv-
alent strain defined in Eq. (19) controls the pro-
gression of damage and the limit of the elastic
behaviour is defined in Eq. (20) [27].

ε̃ =

√√√√ 3∑
i=1

(⟨εi⟩+)2 (19)

K(x, t) = max[0,t] (ε̃(x, t) , Ktr0) (20)

where εi are the principal strains, ⟨x⟩+ is the
Macauley bracket, ε̃ is the equivalent strain, K
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is a history parameter that preserves records for
previously triggered damage, which cannot de-
crease, and Ktr0 is the threshold of the damage.
The damage evolution law in this model is de-
scribed using Eq. (21) [27].

g(K) = αt ·Dt + αc ·Dc (21)

where

Dt,c = 1− Ktr0(1−At,c)

K

− At,c

exp{Bt,c(K−Ktr0)} (22)

and αt,c are defined by Mazars in Ref. [27].
Two damage models have been calibrated

from these LDPM results. The first one is a
classical local model where the fracture energy
is controlled. It is in fact the continuum dam-
age equivalent of a crack band model. For this,
the model is such that At = 1 and the energy
dissipation upon fracture can be expressed as a
function of Bt and of the size of the element
in which damage localizes [28]. The second
model is an integral nonlocal damage model.
Damage is controlled by a spatial average of the
equivalent strain as described in Eq. (23) [30]
where ε̃ is the effective strain already described
in Eq. (19), and ψ is a gaussian function with
an internal length LC .

ε =

∫
ψε̃dv∫
ψdv

(23)

The average equivalent strain replaces the
equivalent strain in Eq. (20). This model is fit-
ted by adjusting two damage tensile parameters
At and Bt, as well as the initial damage thresh-
old parameter (Ktr0). In the absence of infor-
mation, the internal length, denoted as LC , is
assumed to be 3 times the maximum aggregate
size, as reported in literature [29].

This model’s global response is fitted by
modifying the parameters to the global LDPM
responses. Figure 7 shows the global responses
of LDPM and damage models calculations, and
table 2 shows the calculation parameters for lo-
cal and non-local damage models.

Table 2: Damage models : model parameters

Parameter Non-Local Damage Local Damage
E 26.67 GPA 26.67 GPA

v 0.178 0.178

Ktr0 3.5e−5 1.7e−4

Bt 5200 24

At 0.85 1
β 1.05 1.05

Figure 7: Load versus displacement responses for both
damage models.

The damage distributions from both models
are shown in figure 8. While the local model
only shows damage in the central elements di-
rectly above the notch, the non-local model
shows a damage zone that extends around it.

Figure 8: Damage distribution according to the local
damage model (top) and nonlocal damage model (bot-
tom). Green corresponds to values of damage equal to
0.5, red to values of damage close to 1.

The coarse-grained strains have been com-
pared to those from both damage models. Nor-
malised errors are calculated using Eq. (24).
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Coarse-grained strains are designated by εcg,
whereas strains from both damage models are
denoted by εdam.

Eε =

√
∆ε : ∆ε

√
εdam : εdam

(24)

where ∆ε = εcg − εdam. Figure 9 shows
2D error maps comparing strains from damage
models to coarse-grained LDPM calculations at
time step 50 defined in figure 4. Strain errors in
the non-local model are up to 80%. For the local
model, the strain errors are up to 21200%. With
the local model, the concentration of damage
in the central parts of the local damage model
causes significant errors. On the other hand, the
distribution of the damage zone in the non-local
damage model results in a relatively better rep-
resentation of the strain for the chosen compar-
ison region. The non-local model works bet-
ter when it comes to the representation of the
strain distribution, with the exception of the fi-
nal two time steps where the fracture has prop-
agated throughout the assessment region.

Figure 9: Normalized error map on the strains be-
tween CG-LDPM and non-local damage model (top),
CG-LDPM and local damage model (bottom)

While both damage models represent rather
properly the global response of the beam, sig-
nificant errors still exist at the local level be-
tween the results from damage models and

those of obtained from coarse graining LDPM
data. In the present section, we have assumed
the value of the internal length (LC), using esti-
mates that have been proposed in the literature.
Finding this internal length from calibration re-
quires classically to use size effect test data for
the calibration from global responses of speci-
men of various sizes [31]. In the next section,
local data will be used instead.

5 CALIBRATION FROM LOCAL
RESPONSES

We shall consider now the distribution of
stresses and strains obtained from LDPM re-
sults, over the window used for coarse graining
in the previous section. These data are stress
and strain histories upon loading the beam and
during failure. The stress-strain histories in fig-
ure 10 show that close to the middle of the
beam, where the macrocrack is located, re-
sponses exhibit softening. Farther from the
crack location, the responses exhibit some snap-
back, meaning that the horizontal stress de-
creases as the horizontal strain decreases, but
this is not performed according to an elastic un-
loading. The tangent modulus is greater than
upon loading. Note, however, that the state of
stress is not uniaxial. There is also a vertical
stress. In addition, the horizontal strain v.s. vol-
umetric strain histories are linear. This suggests
that the Poisson’s ratio of the material is not
changed upon irreversible local response, and it
corresponds indeed to the assumption made in
the isotropic damage model.

From the stress and stress distributions, the
damage parameter D is calculated for each
point, and at each time step, by minimizing the
error between the coarse-grained and computed
deformations in the three principal directions.
The history parameter, denoted by K, is derived
from the non-local (coarse grained) strain fields
according to Eqs. (19), (20), and (23). At each
material point and at each load step, if the his-
tory parameter is less than the maximum value
reached in the previous history, it is replaced by
this maximum value. As a result, we obtain,
for each coarse graining point, a map of the his-
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tory parameter v.s. damage, that should follow
the damage evolution law in the damage model.
These maps are superimposed on the same plot,
yielding figure 11.

Figure 10: stress and strain histories during fracture at
several points (showed on top) of the coarse graining
window: horizontal stress v.s. horizontal strain histories
(middle), horizontal strain versus volumetric strain (bot-
tom).

Obviously, one needs to define the internal
length LC to perform such a calculation. Sev-
eral values of the internal length, ranging from
1Dmax to 5Dmax, are considered. To avoid un-

realistic values of damage and damage thresh-
old, the coarse graining window is not too large
because very small values of damage might
yield unrealistic errors. This occurs mostly
when no damage has occurred and the coarse
grained stress is low.

Eq. (22) is then fitted for each value of the in-
ternal length using a Levenberg-Marquardt pro-
cedure. To improve accuracy, a logarithmic
scale for K is used for the fit. As a result, we
now have At, Bt, and Ktr0, for every internal
length LC . We now select the best possible
approximation, meaning the value of the inter-
nal length that yields the smallest possible error.
Figure 11 shows the resulting fit of the damage
evolution law.

Figure 11: Damage evolution law for the best value of the
internal length.

Taking the minimum of the error provides
the best possible value of the internal length
which turns out in this case to be equal to the
coarse graining length (but this should not be
automatic). We obtain then the corresponding
values of the model parameters: At = 0.83,
Bt = 4212, and Ktr0 = 4.54e−5. All the pa-
rameters in the nonlocal damage model are now
obtained from the calibration with local stress-
strain histories. We observe in figure 11 that
data points do not fall on a single curve. Data
are noisy, but the noise results here from the
error due to the postulated constitutive model
compared to the LDPM response.
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Figure 12: Prediction of the global response as a result of
the local fit of the damage parameters including the inter-
nal length.

Figure 13: Profiles of energy dissipation across the FPZ
at mid-heigth of the beam.

At this stage, it is important to check the re-
sult of this set of material parameters on the
global response of the beam. Figure 12 shows
the global response obtained from the nonlocal
damage model. To appreciate the influence of
the dispersion on the evolution law for damage,
lowest and highest data points have been re-
tained and used to fit again the equation govern-
ing the evolution of damage. We obtain an in-
terval of values for At, Bt and Ktr0 from which
two extreme responses can be computed. The
LDPM responses should be located in between
those extreme responses, which is almost the
case. Again, this may not occur because the
constitutive model is too simple. In the present
case, the result can be considered satisfactory.

As a final validation of the calibration, we have
also plotted the energy dissipation across the
FPZ in figure. 13. The profile obtained from
coarse graining directly and the profile obtained
from the nonlocal model compare quite well.

6 CLOSURE
Lattice-based discrete approaches have been

proved in the past to be much more power-
ful than most continuum based model when it
comes to modeling fracture of concrete. Un-
fortunately, they are limited because they com-
putationally too intensive. In this contribution,
we have presented first a coarse graining tech-
nique that converts discrete results from LDPM
to continuum based quantities such as strains
and stresses. These data can serve as high-
fidelity data from which a macro-scale - sim-
plified - continuum model may be calibrated.
Calibration from global responses is incomplete
because the internal length entering into the reg-
ularized model cannot be obtained, unless sev-
eral sizes of beams are used and the calibration
repeated for each size. It is complete when con-
sidering calibration from full strains and strain
fields, with the limit that the macro-scale model
may be too simple and yield responses that may
not be as accurate as expected. A pending is-
sue is, however, that the predicted widths of the
FPZ may not correspond to the width of the FPZ
observed in the LDPM calculation. This is the
subject of a companion paper presented at this
conference [32].
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