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Abstract. A tensorial continuum damage model for concrete which can correctly predict the failure
stress states and failure modes in general multiaxial stress states is presented. The model is thermo-
dynamically consistent and is based on proper expressions for the specific Gibbs free energy and the
complementary form of the dissipation potential. Damaging of the material is described by a sym-
metric positive definite second order damage tensor. Invariant theory is used in construction of the
potential functions which guarantees that the proper symmetry behaviour is satisfied and no artificial
symmetrization operations need not to be done. The failure surface is formulated in a way that it
mimics the behaviour of the well-known Ottosen’s four parameter failure surface. The predictions
of the proposed model are compared to the Concrete Damaged Plasticity (CDP) model available in
the commercial finite element software Abaqus in uniaxial and equibiaxial cases. The CDP model
is calibrated against the uniaxial test results. However, for the CDP model the strain in the loading
direction in the biaxial case starts to deviate from the experimental results already before the peak
stress, while the present model yields accurate prediction. The constitutive model is implemented as
an UMAT subroutine to be used in Abaqus.

1 INTRODUCTION

Concrete is one of the most commonly used
construction materials, and has been subjected
to a significant amount of research including
failure behaviour in consideration of differ-
ent loading conditions and micro-structural de-
fects such as voids, inhomogeneities and micro-
cracks. Typical characteristics of the failure be-
haviour of concrete include gradual loss of the
elasticity, volume dilatancy and strain soften-
ing, which are consequences of the propagation

and coalescence of micro-cracks leading ulti-
mately to the material failure [10, 41]. The me-
chanical failure of concrete is induced mainly
by cracking in tension due to propagation of
the most critical micro-crack, and by crushing
in compression due to the interaction of dis-
tributed micro-cracks [2]. This fact shows up
in uniaxial compression as axial splitting along
the direction of compression. Schreyer [38] ob-
served that the classical stress criteria do not
have the flexibility to reflect the failure modes
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for various stress states and thus cannot predict
axial-splitting. Only few continuum models
can predict the compressive axial-splitting, e.g.
[2, 17, 24, 33, 38, 42, 46], although the physics
of axial-splitting have been studied quite exten-
sively, see e.g. [18] and the references therein.

A huge number of different constitutive
models based on plasticity theory have been
presented for concrete, see e.g. [11, 15, 44].
Damage descriptions by means of scalar, vec-
torial or tensorial damage variables have been
utilized. Scalar damage variables are easy
to implement, and hence widely applied, e.g.
[14, 20, 27, 34]. Mazars and Pijaudier-Cabot
[31] presented relationships between isotropic
damage and fracture mechanics theories. The
damage of rock-like materials, however, is def-
initely anisotropic due to the orientation of
micro-cracks depending on the stress state. This
feature can be described only by vectorial or
tensorial damage variables. Vectorial damage
variables have been used in [4, 5, 9, 24, 32]
and second- or higher-order damage tensors in
[1, 10, 12, 23, 28, 33, 36, 39, 45, 47, 49].

Several authors have combined plasticity and
damage to model the failure of concrete [6, 14,
19, 21, 22, 43, 47]. On the other hand, since
the inelastic behaviour of concrete is rather due
to damage and micro-cracking than plastic de-
formations, as presented by [30, 31], models
based merely on damage and micro-cracking
have been formulated regularly.

The well-known Barcelona model, using a
scalar damage variable for the degradation of
both the volumetric and distortional elasticity,
separately, was presented in [29]. Lee and
Fenves [26, 27] revised the model by using two
independent scalar damage variables to repre-
sent properly the cyclic behaviour of concrete.
Their model has been implemented in the com-
mercial finite element software Abaqus by [8].
A similar approach is carried out by [16], and
a selection of 3D concrete models is reviewed
in [35, 40]. As an alternative approach the mi-
croplane approach has got much attention, see
e.g. [3, 40].

Ottosen proposed in 1977 [37] a model

which captures the relevant features of concrete
failure under various multiaxial stress states. In
a recent study [48], the Ottosen model is for-
mulated as an elasto-plastic model with a non-
associated flow rule. Combination of the Ot-
tosen model with damage mechanics with two
damage parameters is given by Contrafatto and
Cuomo [7].

In the present paper, a model for concrete,
which was proposed in [42], is briefly summa-
rized. In developing this model the following
items were emphasized. The model should be
able to capture the basic brittle failure modes:
a) axial splitting along the direction of uncon-
fined uniaxial compression, b) damaging per-
pendicular to the direction of uniaxial uncon-
fined tension. It should also predict similar fail-
ure stresses to the Ottosen model and be ther-
modynamically consistent.

2 Constitutive model

This conference paper gives a brief overview
of the recent continuum damage based consti-
tutive model proposed in [42]. The model can
capture the basic brittle failure modes and pre-
dict multiaxial failure stresses identical to those
predicted by the Ottosen failure surface. For-
mulation of the model is based on continuum
thermodynamics and pertinent choices for the
two potential functions: the specific Gibbs free
energy (Gibbs function) and the dual form of
the dissipation potential, which are developed
by using the invariant theory of scalar tensor-
valued functions.

The reversible behaviour is modelled by the
free energy function which depends on two
symmetric second order tensors, the stress σ
and the damage tensor D . In this particular
case the integrity basis contains ten invariants
Adopting only the terms which are linear in D
and quadratic in σ, the mechanical part of the
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free energy function is given as

ρ0ψ
c(σ,D , κ) =

1

4G

[
tr(s2) + tr(s2D)

]
+

1

18Kb

(1 + χ trD)(trσ)2

+

κ∫
0

κ′∫
0

g(κ′′)dκ′′dκ′, (1)

where G and Kb stand for the shear and bulk
modulus, χ is a dimensionless positive mate-
rial parameter, κ is a scalar internal variable de-
scribing the hardening/softening behaviour and
ρ0 is the density. The deviatoric stress tensor is
denoted as s = σ − 1

3
tr(σ)I . The integrand

g(κ) is a four-parameter rational function [42]

g(κ) =
H0

κ0

h2 (κ/κ0)
2 − 2h1 (κ/κ0)− 1[

h2 (κ/κ0)
2 + 1

]2 . (2)

For description of the irreversible damag-
ing behaviour, the dissipation potential is de-
fined by the thermodynamic forces Y and K
describing the damage and hardening, respec-
tively. The dissipation potential is now defined
as

φ(Y , K;σ, ε) = I(Y , K;σ, ε), (3)

where I denotes the indicator function that re-
stricts the stresses inside the elastic domain
[13], and it is defined as

I(Y ,K ;σ, ε) =

{
0, if (Y , K) ∈ Σ

+∞, if (Y , K) /∈ Σ,
(4)

where Σ is a convex set defining the admissible
elastic domain for (Y , K) and bounded by the
damage criterion f(Y , K;σ, ε) ≤ 0.

The failure surface is in line with the Ottosen
model [37] and since the failure modes of defor-
mation are essential, the damage surface is now
formulated as

f(Y , K;σ, ε) =
AJ2
σc

+ Λ(θ)
√
J2 +BI1

− (σc0 +K) + tr
[
AT (Y − Y (σ))

]
, (5)

where J2 = 1
2
tr(s2), I1 = trσ and σc,

σc0 are the uniaxial compressive strength and
damage initiation stress. The shape fac-
tor Λ(θ) depends on the Lode angle θ =

(1/3) arccos(3
√
3 J3/(2J

3/2
2 )) and determines

the size and shape of the failure surface on
the deviatoric plane [37, 42] and J3 = det(s).
Shape of the failure locus changes from almost
triangular shape at low hydrostatic compressive
stress states to more rounded shape at high hy-
drostatic compressive stress states, see Fig. 1.
The symmetric positive definite second-order
tensor A = A(σ, ε) is defined as

A =
1

1 + β1⟨tr σ⟩/σt

(
ε+
∥ε+∥

+ β2I

)
(6)

and ε+ is the positive part of the elastic strain
tensor, i.e. ε+ =

∑3
i=1⟨εi⟩ϕi ⊗ ϕi, where

εi, i = 1, . . . , 3 are the eigenvalues of the
elastic strain tensor, ϕi stands for the corre-
sponding eigenvectors, β1, β2 are positive non-
dimensional parameters and σt is the uniax-
ial tensile strength. The norm of a second or-
der tensor tensor is defined in a standard way,
i.e. ∥ε+∥ =

√
tr(ε2+), and ⟨•⟩ denotes the

Macaulay brackets.

Figure 1: Shape of the failure locus on the deviatoric
plane. Above on the π-plane (σm = 0) and at σm = −σc

below. Blue curve corresponds to the Ottosen model and
red one to the Barcelona model.
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The thermodynamic force Y dual to the
damage rate is obtained from the definition

Y (σ) = ρ0
∂ψc

∂D
=

1

4G
s2 +

χ

18Kb

(tr σ)2I.

(7)
and the hardening variable K is

K = −ρ0
∂ψc

∂κ
= −

κ∫
0

g(κ′)dκ′

= H0
h1 (κ/κ0)

2 + (κ/κ0)

h2 (κ/κ0)
2 + 1

, (8)

Positive definiteness of tensor A in (5) to-
gether with the requirement that χ ≥ 0 in (7)
guarantees that the dissipation power is non-
negative.

Using the approach presented in [42] results
in the constitutive equations

ε = ρ0
∂ψc

∂σ
, Ḋ = λ̇

∂f

∂Y
= λ̇A(σ, ε)

κ̇ = −λ̇ ∂f
∂K

= λ̇. (9)

The multiplier λ̇ is determined from the consis-
tency condition ḟ(Y , K;σ, ε) = 0. It can be
easily seen that the failure mode is correct in
unconfined uniaxial tension and compression,
see [42, Sec. 3.2].

3 IDENTIFICATION OF MATERIAL PA-
RAMETERS

The Ottosen parameter set A, B, k1 and k2
in the failure surface are adjusted to represent
the damage surface corresponding with the four
failure states [37, 42]. Since damage starts to
develop at fairly low stress levels, the damage
initiation stress in compression σc0 needs to be
selected. To obtain the parameters χ, κ0, β1 and
β2, the uniaxial compression and tension as well
as the biaxial test results are needed. It should
be emphasized that the twelve model parame-
ters (A,B, k1, k2, K∞, H0, h1, h2, κ0, χ, β1, β2)
can be obtained by using closed form ex-
pressions from the data shown in [42, Ta-
ble 1] (strength values in uniaxial compres-

sion and tension, biaxial compression, one ex-
tra point from compressive meridian (I1, J2)-
values, damage initiation stress in uniaxial com-
pression, strain values at the peak stress in uni-
axial compression, strain at uniaxial tension
failure and one stress and corresponding strain
value on the post-peak range. Complete proce-
dure to obtain the parameter values is described
in [42, Sect. 3.3].

4 RESULTS
Predictions of the model are compared to

the well documented experimental data for con-
crete by Kupfer et al. [25] and the values used
in calibration of the model are shown in [42, Ta-
bles 1 and 2] as well as the current model pa-
rameters. The biaxial tests in [25] were per-
formed with specimens having dimensions 20
cm × 20 cm × 5 cm and the model results are
compared to the tests having unconfined uni-
axial compressive strength of 30.9 MPa, max-
imum aggregate size 15 mm and the water-
cement ratio 0.9.

Results for the equibiaxial compression test
(σ11 = σ22) are shown in Fig. 2.

Figure 2: Stress-strain behaviour in equibiaxial com-
pression (σ11 = σ22) [42, Fig. 8] with experimental re-
sults from [25]. The Abaqus CDP model responses are
shown for four values of the dilatation angle. It should be
noticed that different dilatation angle gives the best fit to
experimental data in comparison to unconfined uniaxial
compression (see [42, Fig. 4]) for the CDP model.

4



S. Dhakal, J. Hartikainen, R. Kouhia, T. Saksala, J. Vilppo, K. Calonius, A. Fedoroff, K. Kolari

The best similarity to the experimental re-
sults for the Abaqus CDP model is obtained
when the dilatation angle is 8◦, in which case
the σ11, ϵ33-curve is almost identical to the re-
sponse of the present model. However, for the
CPD model the strain in the loading direction
starts to deviate from the experimental results
already before the peak stress.

As a result of the present model, the dom-
inant damage develops perpendicularly to the
plane of loading as it can be seen from Fig. 3.

Figure 3: Damage-strain behaviour, damage is the
largest in the 33-direction, i.e. the fracture mode corre-
sponds splitting along the compressive plane illustrated
[42, Fig.9].

5 CONCLUSIONS
A thermodynamically consistent formula-

tion to model anisotropic damage for concrete
and other quasi-brittle materials is presented.
The model is based on proper expressions for
the specific Gibbs free energy and the comple-
mentary form of the dissipation potential. Dam-
aging of the material is described by a symmet-
ric positive definite second order damage ten-
sor. In this approach the values of the compo-
nents in the damage tensor do not have an upper
bound, thus facilitating a continuous numerical
implementation. Especially, the failure surface
is formulated in such a way that it will mimic
the behaviour of the well-known Ottosen’s four

parameter failure surface. Although the for-
mulation is basically non-associated, it follows
closely the one for the standard dissipative
solid.

One significant feature of the proposed
model is its ability to model the failure modes
correctly. In uniaxial compression, the mode
of failure is axial splitting, i.e. the damaged
zones are aligned parallel to the direction of the
compressive stress. In tension, the failure takes
place in a plane perpendicular to the applied
stress. The obtained results are in accordance
with the well-known experimental results found
in literature.

To obtain a well behaving numerical model
avoiding pathological mesh-dependency, some
regularization strategy should be included in the
model. Fassin et al. [12] regularized a CDM-
model where damage is described by a second
order tensor by using only a scalar variable.

Future research will also be focused on de-
scribing the plastic and cyclic behaviour of the
material.
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